FREE ELECTRONIC LIBRARY - Dissertations, online materials

Pages:   || 2 |

«Sensors 2009, 9, 9029-9038; doi:10.3390/s91109029 OPEN ACCESS sensors ISSN 1424-8220 Article Selective Detection of ...»

-- [ Page 1 ] --

Sensors 2009, 9, 9029-9038; doi:10.3390/s91109029



ISSN 1424-8220



Selective Detection of Formaldehyde Gas Using a Cd-Doped

TiO2-SnO2 Sensor

Wen Zeng 1,2, Tianmo Liu 1,*, Zhongchang Wang 2,*, Susumu Tsukimoto 2, Mitsuhiro Saito 2 and

Yuichi Ikuhara 2

College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R.

China; E-Mail: zeng_wen1982@yahoo.com.cn

World Premier International Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan;

E-Mails: tsukimoto@wpi-aimr.tohoku.ac.jp (S.T.); saito@wpi-aimr.tohoku.ac.jp (M.S.);

ikuhara@sigma.t.u-tokyo.ac.jp (Y.I.) * Authors to whom correspondence should be addressed; E-Mails: zcwang@wpi-aimr.tohoku.ac.jp (Z.W.); tmliu@cqu.edu.cn (T.L.); Tel.: +81-22-217-5933; Fax: +81-22-217-5930.

Received: 9 October 2009; in revised form: 28 October 2009 / Accepted: 29 October 2009 / Published: 13 November 2009 Abstract: We report the microstructure and gas-sensing properties of a nonequilibrium TiO2-SnO2 solid solution prepared by the sol-gel method. In particular, we focus on the effect of Cd doping on the sensing behavior of the TiO2-SnO2 sensor. Of all volatile organic compound gases examined, the sensor with Cd doping exhibits exclusive selectivity as well as high sensitivity to formaldehyde, a main harmful indoor gas. The key gas-sensing quantities, maximum sensitivity, optimal working temperature, and response and recovery time, are found to meet the basic industrial needs. This makes the Cd-doped TiO2-SnO2 composite a promising sensor material for detecting the formaldehyde gas.

Keywords: volatile organic compound; formaldehyde; TiO2-SnO2; Cd doping; gas sensor Sensors 2009, 9 9030

1. Introduction The evaluation of indoor air quality is serious environmental issue that is urgently in need of being addressed. Indoor pollutants, which mainly consist of volatile organic compounds (VOCs) such as formaldehyde, benzene, toluene, xylene, and methanol, are well known to enable the so-called building-related sickness [1]. The conventional method used for monitoring indoor VOCs is generally time-consuming and expensive because it involves on-site sampling of indoor air but ensuing analysis of the sampled air in a laboratory [2−5]. To date, there are still no electronic sensors available for in situ detection of indoor VOCs, in particular, the formaldehyde [6], which has already been classified as a probable carcinogen [7−9]. For this reason, extensive research has been conducted on developing a sensor that has a simple device structure and can be put into practical use. To this end, a number of potential sensing materials have been fabricated through a variety of methods [10−12].

Of all the materials investigated, semiconductor metal oxides are promising for monitoring the harmful VOCs owing to their various advantages, for example, simple fabrication process, rapid response and recovery, and low cost. In particular, the oxides SnO2 and ZnO, are of strong current interest because they enable an effective detection of VOC gases, especially formaldehyde [13−15].

However, one of the critical issues currently limiting the wide use of these oxides is their lack of selectivity towards formaldehyde [16]. Therefore, in this work, we propose a new nonequilibrium solid solution, TiO2-SnO2 composite, in order to improve selectivity as well as sensor response to formaldehyde gas. In particular, we introduce Cd into the TiO2-SnO2 composite and investigate how the Cd doping affects gas-sensing properties. This composite material has been selected deliberately because it is suggested that composite materials may exhibit unusual sensing functionality that is absent in either of their host components [17]. As expected, we find that the Cd-doped TiO2-SnO2 shows an exclusive selectivity to formaldehyde gas, thereby holding technological promise for fabrication of formaldehyde gas sensors.

2. Experimental Procedure

The TiO2-SnO2 solid powder was prepared using the sol-gel method. First, metal salt precursors were hydrolyzed in a dilute pH 3~5 solution of ammonium hydroxide. Next, the generated metal salt SnCl4·5H2O and tetrabutyl Ti were dissolved in distilled water. The concentration of Ti cation varied from 0.1 mol/L to 0.2 mol/L, but the ratio of Ti to Sn was maintained at 1:5. To examine the Cd-doping effect, the compound CdNO2 was added to the mixed solution in a drop-by-drop fashion under intense magnetic stirring. The mass ratio of Cd additive to total metallic ions was estimated to be about 1 ~ 2%. It should be noted that as an initial step, we did not address the potential effect of the mass ratio of Cd dopant on gas-sensing properties. To basify the mixed solution, ammonium hydroxide was gradually added dropwise until its ultimate pH reaches 8, which results in immediate precipitation.

After the precipitation, the slurry was first aged for 24 h, filtrated and washed to remove chloride ions, then dried at 353 K and ground to a uniform powder. The powder was finally annealed at 723 K for 2 h.

For the purpose of comparison, we also prepared pristine TiO2-SnO2 powder using a similar Sensors 2009, 9 9031 preparation approach. The produced powder was further mixed with diethanolamine and water to form a paste, which was subsequently screen-printed onto an alumina substrate. The substrate is schematically illustrated in Figure 1(a). A set of comb-like Au electrodes were attached at a distance of 200 μm. The cross-section dimension of the electrodes was fixed at 15 mm × 10 mm and the potential effect of electrode dimension on sensor response was not addressed in present study. The printed substrate was finally sintered at 773 K for 3 h, yielding a thick-film gas sensor [Figure 1(b)].

The film thickness after the sintering was estimated to be about 10~20 μm.

–  –  –

The microstructures of the solid powder and thick film were characterized using X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. For the XRD, an XD-5A diffractometry with Cu Kα operated at 30 kV and 100 mA was used. As for the AFM, we applied a high-speed CSPM4000 microscopy with contact mode, which accurately images surface topography. Gas-sensing properties were measured using a static system controlled by a computer. We used a micro-injector to introduce the VOCs into the chamber and manipulate the VOC concentrations via tuning the input VOC amount alone due to the fixed chamber volume. During the measurement, the sensor was powered at 373 K for 120 h in air and operated at 303 K under a relative humidity of 40%. The gas sensitivity was defined as a ratio of resistance (R0) in air to that in test gas (R). As for the measurement of voltage, we adopted a circuit shown in Figure 1(c), which could be divided into a heating and measuring part. Clearly, the output voltage varied with the type and concentration of test gas.

Sensors 2009, 9 9032

3. Results and Discussion

3.1. Composition and Microstructure of Gas Sensing Materials To determine chemical composition of the prepared powder, we performed XRD analysis, as shown in Figure 2, where textural orientations of the detected matters are given as well for easy reference.

From Figure 2(a), one can clearly see TiO2 and SnO2 peaks in the undoped case, as expected from the aforementioned preparation process. However, no Cd related diffraction peak is detected in the doped case [Figure 2(b)], which is mainly attributed to the small amount of Cd we doped. In light of the approximate relationship between mean particle size (D) and full width at high maximum of XRD peak β (i.e., Scherrer equation) [18]: D = 0.89λ/(βcosθ), where λ is the X-ray wavelength (1.541 Å for Cu) and θ is the Bragg angle, the mean particle sizes for the undoped and doped samples were estimated to be about 32 nm and 30 nm, respectively. This means that the Cd doping has a negligible effect on the particle size of the TiO2-SnO2 composite.

–  –  –

To analyze the elemental species of the thick film, we further show in Figure 3 the energy-dispersive X-ray spectroscopy (EDS) spectrum. We notice that the film is mainly composed of Ti, Sn, and O, in accordance with chemical composition of the prepared powder. The mass ratio of Ti to Sn is estimated to be about 1:5 (Figure 3), demonstrating that we have successfully synthesized the desired composite. Figure 4 shows an AFM image of the surface morphology for both the pristine and doped thick film. Many uniform islands can be observed on the surface, which shows that both films have good crystal shape and even grain size. In comparing the surface morphology of pristine TiO2-SnO2 film with that of doped one, we see that they are similar, which means that the Cd doping affects surface morphology only slightly.

Sensors 2009, 9 9033

–  –  –

3.2. Gas Sensing Properties To investigate further how the doping influences sensing properties, we tested the responses of the pristine and doped sensors to different types of VOC gases such as formaldehyde, benzene, toluene, xylene, and methanol. Figure 5(a) shows gas sensitivities under various temperatures, where one can see that the doped sensor exhibits exclusive selectivity to formaldehyde. It should be noted that an understanding of the underlying origin of this exclusive selectivity has not been developed yet, which will be an important future task. The highest sensitivity to the formaldehyde is estimated to be 32, much higher than that to other examined gases (less than 10). Evidently, this demonstrates that the Cd-doped sensor shows good selectivity to formaldehyde, which is therefore promising for practical device applications. From this figure, we further determine the optimum operating temperature to be about 593 K because maximum sensor response to the formaldehyde is observed at this temperature.

This can be understood by considering that a dynamic equilibrium state will occur between the initial adsorption and the subsequent desorption, as the operating temperature keeps increasing. The Sensors 2009, 9 9034 equilibrium state therefore gives rise to a maximum sensitivity, as seen in Figure 5. Compared to the doped case [Figure 5(a)], the sensitivity of pristine sensor is much lower with a maximum value of less than 5 [Figure 5(b)], although the pristine sensor retains the highest sensor response to formaldehyde.

We thus conclude that the Cd is an effective dopant in improving response and selectivity of TiO2-SnO2 composite to formaldehyde.

–  –  –

Apart from testing the selectivity, we have examined sensitivity of doped sensor as a function of gas concentration. Figure 6 shows sensitivity to the formaldehyde under various concentrations at 593 K.

Clearly, the sensitivity increases sharply as the gas concentration ranges from 50 ppm to 450 ppm but saturates when the concentration increases further. It is worth noting that a sensitivity corresponding to concentration of 100 ppm has already reached a value of more than 15, a criterion required for practical application.

–  –  –

gas is in (out). As seen in this figure, voltage for both the undoped and doped sensor increases sharply when gas is in but returns to its original state while gas is out. The major difference between the two cases is that the voltage for the doped sensor is substantially larger than that for the pristine one at working stage, verifying again significant effect of Cd doping on sensor response improvement. In light of the definition describe above, the response and recovery times for the doped sensor are evaluated to be about 25 s and 17 s, respectively, which meet the basic demands for an industrial application. These short times, together with the high sensor response and exclusive selectivity, suggest that the Cd-doped TiO2-SnO2 may hold the potential for developing a formaldehyde gas sensor.

Figure 7. Response-recovery property for sensors fabricated using undoped and Cd-doped composite materials.

–  –  –

3.3. Gas Sensing Mechanism Although many works have been conducted on TiO2 or SnO2-based sensor, its gas-sensing mechanism remains controversial. The current understanding of the sensing behaviors of TiO2 (SnO2) material, which is based mainly on experimental studies via a trial-and-error design fashion, can be summarized in three main points: (1) gas sensing process is dominantly controlled by the surface of materials and how the surface chemically absorbs oxygen, (2) once target gases, for example VOC

gases, are introduced, oxidization reaction takes place on sensor surface in the following way:

VOC + O− → VOC−O + e−; VOC + O2− → VOC−O + 2e−

(3) gas sensor response may depend critically on the amount of pre-absorbed oxygen. The results presented in this paper demonstrate that the Cd-doped TiO2-SnO2 material has a significantly higher sensor response to formaldehyde than the pristine material. This enhancement of sensor response can be presumably attributed to the Cd additive, which may provide additional sites for adsorbing oxygen.

Consequently, as reductive gas is introduced (Figure 8), more oxidization occurs probably on the Cd surface, which generates more electrons onto the TiO2-SnO2 surface. These electrons would enhance Sensors 2009, 9 9036 surface conductivity noticeably, which can therefore reduce surface resistance considerably [19−22], as observed in the response and recovery curves (Figure 7).

–  –  –

Pages:   || 2 |

Similar works:

«Attila Lüttmerding Ádám Bodor Peter Leischner Boris Madjeric Neven Trenc Annett Zeigerer Matthias Gather Sensitive Transport Development Central European Green Belt along the Berichte des Instituts Verkehr und Raum Band 2 (2008) Sensitive Transport Development along the Central European Green Belt Public transport, hike trails and bike paths Objectives, criteria, analysis and best practice examples (INTERREG IIIB – CADSES) Attila Lüttmerding Ádám Bodor (Hungarian Cyclist Club, PP10)...»

«Dominican Rosary Meditations In Honor of the 800th Jubilee of the Approval of the Dominican Order At the heart of the Holy Preaching of the Dominican Order, the Dominican nuns at Marbury live a contemplative monastic life dedicated to the glory of God and the salvation of souls especially through the prayer of the Divine Office, Eucharistic Adoration, and Perpetual Rosary. Single Catholic young women drawn by God to give themselves totally to Him may contact us at the address below. Please pray...»

«Dollymixtures Nursery Allsorts Out of School Club John Wheeldon Primary School, Corporation Street, Stafford, ST16 3LX Inspection date 14/01/2013 Previous inspection date Not Applicable This inspection: 2 The quality and standards of the early years provision Previous inspection: Not Applicable How well the early years provision meets the needs of the range of children who 2 attend The contribution of the early years provision to the well-being of children 2 The effectiveness of the leadership...»

«Modularity in Process Models: Review and Effects H.A. Reijers1 and J. Mendling2 1 Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands h.a.reijers@tue.nl 2 Queensland University of Technology Level 5, 126 Margaret Street, Brisbane QLD 4000, Australia j.mendling@qut.edu.au Abstract. The use of subprocesses in large process models is an important step in modeling practice to handle complexity. While there are several advantages attributed to such a modular design,...»

«1 [music] Is there a supernatural dimension, a world beyond the one we know? Is there life after death? Do angels exist? Can our dreams contain messages from Heaven? Can we tap into ancient secrets of the supernatural? Are healing miracles real? Sid Roth has spent over 35 years researching the strange world of the supernatural. Join Sid for this edition of It’s Supernatural. SID: Hello. Welcome. Welcome to my world where it’s naturally supernatural. You know, my guest found a key and he...»

«CURRICULUM VITAE DATOS PERSONALES Apellido y nombre: TRUCCO, Norma Elizabeth Nacionalidad: Argentina D.N.I. Nº 11.438.651 Fecha de nacimiento: 21 de septiembre de 1.955 Estado civil: Divorciada Nombre y apellido del padre: Eladio Santiago TRUCCO Nombre y apellido de la madre: Pura Irma GONZALEZ Belgrano 940 – Esquel – Chubut (9200) Domicilio particular: Rivadavia 1223 – Esquel – Chubut (9200) Domicilio profesional: Teléfono particular: 02945 453005 02945 – 453232 Teléfono...»

«Case3:14cvM0722S Document62 FDec101/29/15 Pagel of 16 1 2 3 UNITED STATES DISTRICT COURT 4 NORTHERN DISTRICT OF CALIFORNIA 5 6 Case No. In re 7 '• Cl MONTAGE TECHNOLOGY GROUP 8 ORDER DENYING MOTION TO 9 I LIMITED SECURITIES LITIGATION DISMISS Re: Did. No. 42 10 11 12 Defendants Montage Technology Group Limited (Montage), Howard C. Yang, Stephen Tai, and Mark Voll move to dismiss the consolidated amended complaint (CAC) filed by 15 plaintiffs Martin Graham, et al. The motion, which seeks...»

«CLEAN ENERGY PATENT GROWTH INDEX (CEPGI) 2015 Year in Review Presented by the Cleantech Group Heslin Rothenberg Farley & Mesiti P.C. www.cleantechintellectualproperty.com {H0704526.3} The CLEAN ENERGY PATENT GROWTH INDEX (CEPGI), published quarterly by the Cleantech Group at Heslin Rothenberg Farley & Mesiti P.C. provides an indication of the trend of innovative activity in the Clean Energy sector from 2002 to the present. The CEPGI also ranks the leaders among Clean Energy Patent Owners, along...»

«PARTICLE COUNTS MISLEAD SCIENTISTS: A JMP® AND SAS® INTEGRATION CASE STUDY INVESTIGATING MODELING Kathleen Kiernan, Diane Michelson, PhD, Annie Zangi, SAS Many researchers and statisticians deal with data that do not meet the assumptions of normality or homogeneity of variance. Research has shown parametric tests such as regression or ANOVA can be robust to modest violations of these assumptions. Data transformations are commonly used tools that can provide methods to improve normality of a...»

«Board of Directors Meeting Date: Friday 23rd May 2014 Time: 9.30am – 3pm Venue: Boardroom 9.30am Board photo being taken for Annual Report Time Item for discussion Owner Board action Metrics BAF Risks Preparation 10am Patient Story 10.10 Apologies D Henshaw 10.10 Declarations of Interest All For Board Members to declare an interest in particular agenda items Read minutes 10.10 Minutes of the previous D Henshaw Check for amendments and approve meeting: 6th May 2014 (2014/63) Verbal 10.15...»

«NCVER adult literacy new new millennium millennium literacy new millennium new millennium literacy literacynew millennium in the new literacy millennium Literacy in the new millennium Michele Lonsdale Doug McCurry e Need more information on vocational education and training? Visit NCVER’s website http://www.ncver.edu.au ü Access the latest research and statistics ü Download reports in full or in summary ü Purchase hard copy reports ü Search VOCED—a free international VET research...»

«Distant Star Games Presents Thrash Second Edition -betaBy Ewen Cluney Thanks To My real life friends, a.k.a. the Neko Machi-gumi (or failing that, “The Group”). The Thrash Mailing List gang and all the other Thrash fans that have supported me over the years. SNK, Capcom, Sammy, Tecmo, Namco, and too many others to mention. Credits Designed and written by Ewen Cluney ©2007 by Ewen Cluney This work is licensed under the Creative Commons Attribution-NonCommercial 2.5 License. To view a copy...»

<<  HOME   |    CONTACTS
2016 www.dissertation.xlibx.info - Dissertations, online materials

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.