WWW.DISSERTATION.XLIBX.INFO
FREE ELECTRONIC LIBRARY - Dissertations, online materials
 
<< HOME
CONTACTS



Pages:   || 2 |

«Nuclear Bunker Busters, Mini-Nukes, and the US Nuclear Stockpile The Bush administration is contemplating a new crop of nuclear weapons that could ...»

-- [ Page 1 ] --

Nuclear Bunker Busters, Mini-Nukes, and the US Nuclear Stockpile

The Bush administration is contemplating a new crop of nuclear weapons that could reduce the

threat to civilian populations. However, they're still unlikely to work without producing massive

radioactive fallout, and their development might require a return to underground nuclear

testing.

Robert W. Nelson

Congress is currently considering legislation that would authorize the US nuclear

weapons laboratories to study new types of nuclear weapons: Earth-penetrating nuclear bunker busters designed to destroy hardened and deeply buried targets, and agent-defeat warheads intended to sterilize stockpiles of chemical or biological agents. In addition, the Bush administration has requested that Congress repeal a 1994 law, banning research that could lead to development of mini-nukes, low-yield nuclear warheads containing less than the power equivalent of a 5-kiloton chemical explosion, one-third that of the Hiroshima bomb.

The actual development of new nuclear weapons would require additional legislation and would signal a major policy reversal. The US has not developed a new nuclear warhead since 1988 and has not conducted a nuclear test since 1992.

And although the Senate did not consent to ratify the Comprehensive Test Ban Treaty in 1999, the US continues to participate in a worldwide moratorium on underground nuclear testing. Currently, US nuclear weapons laboratories monitor and maintain the existing nuclear inventory through the Department of Energy's Stockpile Stewardship Program. (See Raymond Jeanloz's article in Physics Today, December 2000, page 44.) In support of its request to repeal the 1994 law, the Bush administration is arguing that the US may need lower yield nuclear weapons to more credibly deter rogue regimes possessing chemical, biological, or nuclear weapons. But arms control advocates fear that renewed US development of nuclear weapons would spark similar actions by other nuclear-armed nations and damage long-standing efforts to prevent the further proliferation of nuclear weapons. In addition, critics charge that mini-nukes blur the distinction between conventional and full-blown nuclear war and make the eventual use of nuclear weapons more likely.

Whether the US should go forward with actual development of new types of nuclear weapons will almost certainly be debated vigorously in Washington, DC for the next several years. Physicists and engineers have often participated in public debates over nuclear weapons policy, including new nuclear weapons development.1,2 (See various related articles in Physics Today, July 1975, November 1989, and March 1998*.) More important, scientists can help policymakers to distinguish which technical goals are feasible and which are merely wishful thinking.

Nuclear weapons advocates in the Bush administration favor missiles carrying nuclear warheads that could be designed to penetrate the ground sufficiently to destroy buried command bunkers or sterilize underground stocks of chemical and biological weapons and yet produce "minimal collateral damage." Crucial to the debate, therefore, is an understanding of the capabilities and limitations of earth-penetrating nuclear weapons. How deeply, for example, can missiles really burrow into reinforced concrete? How deeply buried must these weapons be for the surrounding rock to contain the blast? Would the underground temperatures of a nuclear blast sterilize chemical and biological agents?3 This article addresses these questions and explains that the goal of minimal collateral damage falls squarely in the wishful-thinking category.

–  –  –

Figure 1 To supplement its supply of conventional penetrators, the DOD is also developing conventional agent-defeat warheads that combine the advantages of a hardened missile casing with a low-pressure incendiary warhead. Those weapons are designed to penetrate the interiors of a shallow-buried facility and then ignite a thermocorrosive filling that can maintain high temperatures for several minutes;

the high temperatures and low pressures are meant to sterilize toxins and bioagents without dispersing them to the environment. The warhead may also release chlorine and other disinfecting gases to destroy any remaining biological agents.4 To judge by the effectiveness of weapons used in the US wars in Afghanistan and Iraq, the precision, penetrating capability, and explosive power of conventional earth-penetrating weapons has improved dramatically over the past decade, and those trends are likely to continue.

Deeply buried and hardened structures, like a command and control bunker or a missile silo tens to hundreds of meters underground, are more immune to conventional explosives, though. Those structures are difficult to destroy even using an aboveground nuclear explosion: Until recently, the huge 9-megaton Bnuclear bomb was designated to destroy such targets. Most nuclear weapons now in the US stockpile were designed to explode in the air or on contact with the ground. (For a brief summary of basic designs of nuclear weapons, see the box on page 34.) In either case, the blast wave transmits only a small fraction of the total yield as seismic energy into the ground; the large density difference between the air and the ground creates a mechanical impedance mismatch.

A nuclear device exploded just a few meters underground, by contrast, couples its energy more efficiently to ground motion and generates a much more intense and damaging seismic shock than would an air burst of the same yield. Figure 2 illustrates the dramatic change in equivalent yield. Exploding a 10-kt nuclear bomb at a depth of 2 m underground, for example, would increase the effective yield by a factor of about 20 and result in underground damage equivalent to that of a 200-kt weapon exploded at the surface.





To exploit that efficiency, in 1997 the US Figure 2 replaced its aging 9-megaton bombs with a lower-yield but earth-penetrating 300-kt model by putting the nuclear warhead from an earlier bomb design into a strengthened alloy-steel casing and a new nose cone. When dropped onto a dry lakebed from 12 km, the missile penetrated a modest 6 m. But even at this shallow depth a much higher proportion of the explosion energy would be transferred to ground shock compared to a surface burst at the same yield.

Were a bomb manufactured using even stronger materials and its mass increased using a dense internal ballast material--as proposed for the Robust Nuclear Earth Penetrator (RNEP), for instance--penetration depths could improve somewhat.

(The Bush administration requested $15 million to study this improved penetrator.) However, figure 2 illustrates that those improvements would result in only modest gains in the total depth of destruction. Near the explosion, the peak pressure of the shock wave is proportional to the bomb yield and decreases with the inverse cube of the distance from the explosion. Consequently, the destructive effects of an explosion can be expressed as a function of a scaled distance, as is done in figure 2. Most of the benefit of earth penetration is obtained from the first (scaled) meter of burial.

–  –  –

Radioactive fallout The 10 to 20-m range is far less than the burial depths needed to contain the radioactive fallout from even small nuclear explosions. Figure 4 illustrates the stark disparity in the numbers.5 A 1-kt weapon, for example, must be buried at a depth of 90 m to be fully contained. Also shown is the destructive reach of a shallowburied (10–20-m) bunker buster as a function of its yield--that is, how deep a target a given bomb could destroy. The seismic shock from the explosion can certainly destroy deeply buried targets. But weapons like the RNEP would still require very high yields (more than 100 kt) to destroy targets buried deeper than Figure 4 100 m.

To appreciate the enhanced effect and the attendant dangers of a buried explosion, consider the sequence of events that follow detonation of a shallowburied nuclear weapon, as diagrammed in figure 5. The explosion initially vaporizes the surrounding rock and produces a high-temperature cavity. The initial pressure of the cavity gases exceeds the pressure from overlayers of hard dirt and rock by many orders of magnitude. The cavity expands rapidly, sending outward a strong seismic shock that crushes and fractures rock.

–  –  –

Sanitizing stockpiles High temperatures or intense radiation can destroy chemical or biological agents such as VX nerve gas or weaponized anthrax.7,8 So, one might naturally imagine that the temperature and radiation levels produced in a nuclear explosion would be the ultimate germicide, atomizing shallow-buried stockpiles of chemical agents before they could disperse into the environment.2 It turns out, however, that most of the ejected crater material would be unheated and shielded from the initial burst of radiation. A nuclear blast of yield W would create a crater volume about 105 W m3, which disperses about (2 × 108 W) kilograms of debris.6,9 If all of the 1012 W calories of energy from the nuclear explosion were distributed evenly, the mean energy available per unit mass totals about 5 kcal/kg--sufficient to raise the ejecta temperature by only 5–10°C.

Of course, the heat from the explosion is not evenly mixed, but is confined mainly to a small cavity of vaporized rock and steam that expands and vents to the atmosphere. Because the mass density of soil or rock is roughly 2000 times greater than air, the radiation and high temperatures that are usually associated with a nuclear blast have a much shorter range in a buried explosion. In fact, nearly all of the neutron and gamma radiation are absorbed within just a few meters of the explosion.3 Furthermore, although the initial temperature can exceed a million °C, the heat available to vaporize a cavity of rock extends only to a radius near 2W1/3 m, and the heat necessary to melt rock extends only to about twice that distance.10 As the cavity expands, the vaporized rock cools and condenses. For a contained explosion, such as the 1.7-kt Rainier test at the Nevada Test Site, the remaining gases are mainly superheated steam and carbon dioxide at temperatures less than 1500 K.11 Beyond the cavity, the temperature falls off rapidly with distance, reaching the ambient ground temperature within a few cavity radii (see figure 7).

Gases vented from within uncontained explosions cool even more rapidly.

–  –  –

To test or not to test If Congress does eventually authorize the development of new nuclear weapons, will the US have to resume underground nuclear testing in order to certify its warheads? The answer depends on the design in question, but in most cases nuclear testing would be unnecessary.

Nearly all the components of a nuclear weapon, including the implosion of its plutonium core, can be tested absent a nuclear explosion. The testing engineers simply replace the fissile material with a chemically identical isotope that does not produce a chain reaction--the weapon performs nearly every step, but does not deliver a nuclear yield. That method should be sufficient to test previously certified designs under new conditions and allow engineers to safely judge the performance of weapons that would experience the severe shock of earth penetrators.

If Congress were to opt for low-yield nuclear weapons, nuclear testing could again be bypassed because of the flexibility already built into existing warheads.

Indeed, every modern warhead in the US nuclear arsenal has a low-yield mode.

By disconnecting the secondary stage of the thermonuclear reaction and reducing (or eliminating) the phase that boosts the deuterium–tritium gas, a nuclear weapon in the arsenal could be converted into an unboosted primary fission weapon that delivers a subkiloton yield.

Gun-type designs, described in the box on page 34, are so simple and robust--one subcritical piece of highly enriched uranium (HEU) is propelled into another to make a supercritical mass--that they would also require no testing. Unfortunately, would-be nuclear terrorists are also likely to recognize the simplicity of those devices. To minimize the likelihood of nuclear terrorism, therefore, the number of locations in the world where HEU can be found should be greatly reduced.

But if Congress were to authorize the nuclear weapons laboratories at Los Alamos and Lawrence Livermore to pursue a completely new design--an implosion device using a boosted primary--the inherent uncertainties in warhead performance would almost certainly require that the weapon be fully tested before being certified to enter the US stockpile.12 Such a decision would have profound consequences.

Since the end of the cold war, nuclear weapons have receded in importance; highprecision conventional weapons can now accomplish many missions that until recently would have required nuclear yields. Were the US to research and develop new types of nuclear warheads for the kinds of missions discussed here--bunker busting or targeting chemical stockpiles--the course change would surely signal a renewed US belief that nuclear weapons have a broad range of potential uses. In response, wouldn't foreign nations have a powerful incentive to develop or improve their own nuclear deterrent?

Were the US to resume underground nuclear testing, it is highly likely that Russia, China, and other countries would resume their own programs as well. Those nations could improve their own nuclear arsenals far more than would the US, if there was a return to testing. Such a breakdown in the moratorium would destroy near-term prospects of entry into force of a comprehensive test ban and profoundly undermine efforts to limit nuclear proliferation.

I thank Frank von Hippel for originally suggesting this project and for his thoughtful guidance. I also acknowledge helpful conversations with Sidney Drell, Harold Feiveson, Steve Fetter, Richard Garwin, Raymond Jeanloz, Scott Kemp, Zack Halderman, Michael Levi, Michael May, and Greg Mello.

Robert Nelson is a senior fellow for science and technology at the Council on Foreign Relations in New York City and a research staff member of the program on science and global security at Princeton University.

References

1. S. Drell, J. Goodby, R. Jeanloz, R. Peurifoy, Arms Control Today 33, 8 (2003).

2. See the article by J. E. Gover and P. G. Huray in IEEE Spectrum Online at http://www.spectrum.ieee.org/WEBONLY/resource/mar03/speak.html.



Pages:   || 2 |


Similar works:

«No. In the Supreme Court of the United States _ BRANDON THOMAS BETTERMAN, Petitioner, v. STATE OF MONTANA, Respondent. _ ON PETITION FOR A WRIT OF CERTIORARI TO THE SUPREME COURT OF THE STATE OF MONTANA _ PETITION FOR A WRIT OF CERTIORARI _ STUART BANNER FRED A. ROWLEY, JR. UCLA SUPREME COURT Counsel of Record CLINIC DANIEL B. LEVIN UCLA SCHOOL OF LAW CATHLEEN H. HARTGE 405 Hilgard Ave. GRACE R. DILAURA Los Angeles, CA 90095 MUNGER, TOLLES & OLSON LLP 355 S. Grand Ave., 35th Floor WADE...»

«267 Chapter 21 Security Interests 1. General The security interests created in favor of a creditor grant the latter the right to recover his debt, secured by mortgaged or pledged assets, prior to any unsecured creditor or any other creditors holding subsequent ranking security interests or other preference rights. Moreover, the secured creditor has the right to enforce its debt irrespective of the holder of the secured asset (the right of pursuit). From the perspective of the secured asset...»

«Article6 Global Media Journal – Indian Edition Sponsored by the University of Calcutta/www.caluniv.ac.in ISSN 2249 – 5835 Summer& Winter Joint Issue/JuneDecember 2015/Vol. 6/No. 1& 2 MILITANCY AND COMBAT: THE AFSPA AND MEDIA COVERAGE by Dr. SujataMukhopadhyay Asst. Professor and Head, Dept. of Journalism and Mass Communication, HMM College for Women, Calcutta University email:sujatamukhopadhyay7@gmail.com Abstract This paper focuses on the general apathy of the mainstream newspapers in...»

«“Miscarriages of Justice” An address delivered by Malcolm McCusker AC CVO QC to the Anglo-Australasian Lawyers Society (Western Australia) Inc 24 June 2015 It is an honour to address you this evening, on a subject of importance to everyone with an interest in the pursuit of justice – and I know that applies to all members of this Society. The topics I wish to discuss with you are how miscarriages of justice occur and the difficulties faced by a victim of a miscarriage of justice, in...»

«Wagner-Raith D.S. Smit Essentie Wagner-Raith. Reference for a preliminary ruling. Grandfatheringclause. Bundesfinanzhof Samenvatting In this case, the compatibility of Article 18, paragraph 3 of the German Investmentsteuergesetz with the free movement of capital under Article 63 TFEU is at issue. These provisions, in essence, pursue avoidance of under-taxation of investment income received through an investment fund in comparison to the situation where the investment income would have been...»

«Argument and Computation Vol. 3, No. 1, March 2012, 21–47 Relating Carneades with Abstract argumentation via the ASPIC+ framework for structured argumentation Bas van Gijzela * and Henry Prakkenb,c a School of Computer Science, University of Nottingham, Jubilee Campus, Nottingham, UK; b Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands; c Faculty of Law, University of Groningen, Groningen, The Netherlands (Received 12 October 2011; final version...»

«AN UNEVEN EXCHANGE? DEVELOPING A FAIR AND EFFICIENT APPROACH TO EXIT CONSENTS Daniel P. Herrmann* I. INTRODUCTION A. Background B. Roadmap II. LITERATURE REVIEW/ STATE OF THE LAW A. Fiduciary Duty B. Implied Covenant of Good Faith C. Contractual Remedies D. Statutory Issues III. ANALYSIS OF THE IMPACT OF THE NEW ENGLISH RULE UNDER ASSÉNAGON A. Interpreting the Assénagon Rule B. An Analysis of the Rule’s Effect on Corporate and Sovereign Debt Markets IV. PROBLEMS WITH EXIT CONSENTS V. A...»

«[Cite as Am. Chem. Soc. v. Leadscope, Inc., 133 Ohio St.3d 366, 2012-Ohio-4193.] AMERICAN CHEMICAL SOCIETY, APPELLANT, v. LEADSCOPE, INC., ET AL., APPELLEES. [Cite as Am. Chem. Soc. v. Leadscope, Inc., 133 Ohio St.3d 366, 2012-Ohio-4193.] Unfair competition—An unfair-competition claim based on legal action must show both that the litigation was objectively baseless and that it was intended to injure the plaintiff’s ability to be competitive, but the verdict for Leadscope on this claim...»

«Communication Law Review Volume 12, Issue 2 Enacting Guerilla Marketing to Attain Commercial Speech Protection Jeremy Langett, Lynchburg College uerilla marketing is fast becoming a cost-effective means to convey a commercial G message. Jay Conrad Levinson introduced the phrase “guerilla marketing” in the 1980s to refer to advertising tactics that are “eventor story-based promotional activities that create ‘buzz’ among customers” (Pyrtle 1). Borrowing military metaphors, guerilla...»

«Self-Sufficiency, Assets, and Poverty J. Michael Collins UW–Madison 2015 Financial Capability and Asset Building as Part of Poverty 101 Self-Sufficiency, Assets, and Poverty Broad But Interrelated Topics: 1. Self-Sufficiency 2. Financial Capability 3. Asset Building & Savings Self-Sufficiency • Accessing benefits • Managing resources more – Eligibility and take up efficiently • Stable housing – Budgeting, – And related services Spending • Movement into work • Dealing with...»

«ASX Announcement 23 December 2015 THE INFORMATION CONTAINED HEREIN IS RESTRICTED AND IS NOT FOR RELEASE, PUBLICATION OR DISTRIBUTION, DIRECTLY OR INDIRECTLY, IN WHOLE OR IN PART IN, INTO OR FROM ANY JURISDICTION WHERE TO DO SO WOULD CONSTITUTE A VIOLATION OF THE RELEVANT LAWS OF SUCH JURISDICTION. ATLAS SIGNS DEBT RESTRUCTURE AGREEMENT Atlas Iron Limited (ASX: AGO) is pleased to announce that it has signed a Restructuring Support Agreement (“RSA”) with more than 75% the Term Loan B...»

«Copyright © 2011 by Washington Law Review Association FORECLOSING MODIFICATIONS: HOW SERVICER INCENTIVES DISCOURAGE LOAN MODIFICATIONS Diane E. Thompson* Abstract: Despite record losses to investors, homeowners, and surrounding communities, the foreclosure crisis continues to swell. Many commentators have urged an increase in the number of loan modifications as a solution to the foreclosure crisis. The Obama Administration created a program specifically designed to encourage modifications....»





 
<<  HOME   |    CONTACTS
2016 www.dissertation.xlibx.info - Dissertations, online materials

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.