FREE ELECTRONIC LIBRARY - Dissertations, online materials

Pages:   || 2 |

«Int. J. Mol. Sci. 2014, 15, 19239-19252; doi:10.3390/ijms151019239 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 ...»

-- [ Page 1 ] --

Int. J. Mol. Sci. 2014, 15, 19239-19252; doi:10.3390/ijms151019239


International Journal of

Molecular Sciences

ISSN 1422-0067



Heparin Assisted Photochemical Synthesis of Gold

Nanoparticles and Their Performance as SERS Substrates

Maria del Pilar Rodríguez-Torres 1, Luis Armando Díaz-Torres 1,* and Sergio Romero-Servin 2

Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (GEMANA), Centro de

Investigaciones en Óptica, A.C., Loma del Bosque 115, León, Guanajuato, C.P. 37150, Mexico;

E-Mail: mprt@cio.mx Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, León, Guanajuato, C.P. 37150, Mexico; E-Mail: sromero@cio.mx * Author to whom correspondence should be addressed; E-Mail: ditlacio@cio.mx;

Tel.: +52-477-441-4200 (ext. 172); Fax: +52-477-441-4209.

External Editor: Bing Yan Received: 2 September 2014; in revised form: 30 September 2014 / Accepted: 13 October 2014 / Published: 23 October 2014 Abstract: Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent.

Keywords: heparin; gold nanoparticles; photochemistry; SERS; organic dyes Int. J. Mol. Sci. 2014, 15 19240

1. Introduction Spectroscopy methods based on Raman Effect are very useful techniques for chemical and physical analysis. Raman spectroscopy is complementary and sometimes competitive to other methods. It has some advantages over various electrons spectroscopies. For example, it allows following up surface processes without the requirement of high vacuum conditions. Also, Raman spectra provide more specific information about given compounds than UV and visible spectroscopy, so it makes the identification of molecules possible. Moreover, Raman spectroscopy usually requires very simple sample preparation. In spite of many advantages, the application of this method is limited by the very low intensity of normal Raman scattering. However, much more sensitive Raman techniques have been developed such as Surface Enhanced Raman spectroscopy (SERS). This method gives almost the same information on the molecules and their local interactions as normal Raman spectroscopy but ensures a great sensitivity. The Raman scattering from a compound (or ion) adsorbed on a nanostructured metal surface (or within its proximity) can significantly increase in comparison to the anayte in solution. This phenomenon was observed first time by Fleischman in 1974 and was partially explained by Jean Maire and Van Vuyne in 1977 [1].

Nanostructures of noble and transition metals onto which the molecules are adsorbed can cause enhancement of the intensity of Raman scattered light. There are two main contributions into Raman enhancement. The first is the electromagnetic (EM) enhancement related to the surface plasmon resonance (SPR). It arises when the wavelength of light couples the oscillation frequency of free conduction electrons on the metal surface. Molecules adsorbed or in close proximity to the surface are affected by relatively enormous electromagnetic field. Intensity of Raman bands depends on the orientation of the scattering molecules and an enhancement of vibrational modes normal to the surface is most efficient. The second mode of enhancement is related to short-range mechanisms of chemical nature: the charge-transfer (CT) complex formation and the chemical bonding of the adsorbate to the metallic nanoparticle surface. Earlier reports [2] focused on SERS on silver electrodes with modified roughened surfaces, but since 1979 the enhancement of Raman signal on silver and gold sols was observed in metal colloids [3]. Colloidal metal nanoparticles have allowed the testing of theoretical models of SERS phenomenon as well as opened the window to their application as an analytical tool in chemistry and biological sciences. Here, SERS efficiency of heparin assisted photochemically-synthesized colloidal gold nanoparticles was tested by using differently charged analytes: Methylene Blue (+), MB [4], Rose Bengal (−), RB [5], and Neutral Red, NR (slightly cationic with a net charge close to zero [6]), all of them at one concentration (1.996 µM).

The organic material used as stabilizing and reducing agent in the nanoparticle photochemical synthesis is heparin sodium, which is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family [7]. The synthesis method, developed in an earlier work [8], is revisited and the products are applied to SERS studies. Heparin-based nanoparticles have been synthesized previously by thermal methods with a direct functionalization of the products [9–11], and in other cases, functionalization is performed after their synthesis [12]. In this work, black light is used to trigger heparin’s reducing action exploiting its reactivity in the UV range. This photochemical method provides a good green chemistry alternative, and in addition, its setup cost is low. Green chemistry methods for nanoparticle synthesis are being incorporated and studied due to the following advantages: Use of non-pollutant nor Int. J. Mol. Sci. 2014, 15 19241 hazardous reactants, use of reactants that are biocompatible, the development of approaches whose production processes of nanomaterials require minimal energy consumption, and a minimal disposal of byproducts [13]. Green photochemical approaches have been explored before, using molecules such as alginate, dopamine hydrochloride, and collagen [14–16] or even without any agent present besides the metal precursor [17]. Also, while SERS substrates based on biomolecules like chitosan, agar, adenine, plant extracts or hybrid (CTAB and DNA) have been the subject of study for analyte detection [18–21], to our knowledge, heparin-based nanoparticles for SERS have not yet been reported.

In SERS it is important to know how the analytes interact with metal nanoparticles. Dyes such as Rhodamines (B OR 6G, commonly) [22,23] and Crystal Violet [24] have already been detected with the aid of gold nanoparticles, yielding good SERS signals, as well as Methylene Blue using plant-synthesized gold nanoparticles [25], and Rose Bengal by using citrate reduced gold colloids [26].

Neither SERS experiments on Neutral Red detection, nor heparin-based gold nanoparticle results in SERS studies have been reported to our knowledge.

In the present work, a 1 mM solution from each dye (MB, RB and NR) was prepared to measure normal Raman spectra. Then, the analyte was added to the gold nanoparticle solution (either elaborated from reactive or pharmaceutical-grade heparin) and the SERS spectra were taken. Then the effects of analyte charge and the performance of these nanoparticles for SERS are discussed.

2. Results and Discussion

2.1. UV-Vis Spectroscopy Measurements UV-Vis spectra were taken to analyze the nanoparticles absorption characteristics and interaction with analytes. The pharmaceutical-grade synthesized nanoparticles show two absorption peaks, one at 532 nm and another one at 824 nm, which means that such products are anisotropic, having a longitudinal as well as a transverse mode (Figure 1a). This can be verified by the scanning electron microscope images. The SEM micrograph inset in Figure 1a shows nanoparticles with either a quasispherical shape, or triangular and trapezoidal plates. Sizes vary from 45 to 60 nm for the quasispherical products while triangles are about 45–75 nm. The situation is completely different, however, for the reactive-grade heparin nanoparticles. The UV-Vis spectra shows one band at 536 nm and a bump to its right side at 630 nm which indicates aggregation in the nanoparticles, see Figure 1b.

Quasispherical particles with sizes in the 30–35 nm range are observed in SEM micrograph inset in Figure 1b. The distribution is more monodisperse than the one shown by pharmaceutical-grade heparin synthesized nanoparticles. No other morphology is observed, but it is clear that aggregates are formed.

UV-Vis spectra (Figure 2a,b) were measured to monitor how the nanoparticles interact with the studied analytes; however there are no dramatic changes in absorption spectra of the mixed solution of colloidal nanoparticles and dyes. In the case of the pharmaceutical-grade nanoparticles (Figure 2a), an almost negligible red-shift is observed, whereas for the reactive-grade heparin nanoparticles a small red-shift is observed (Figure 2b). Though these nanoparticles were already aggregated before analyte addition, analyte addition was found to result in an almost negligible change in absorption spectra profile. So it is not possible to discern form absorption spectra the degree of interaction between the nanoparticles and dyes.

Int. J. Mol. Sci. 2014, 15 19242

–  –  –

Figure 2. (a) UV-Vis spectra of pharmaceutical-grade heparin nanoparticles synthesis and its mix with the differently-charged dyes; (b) UV-Vis spectra of reactive-grade heparin nanoparticles synthesis and its mix with the differently-charged dyes.

2.2. Raman Measurements The Normal Raman and SERS spectra, peak assignment and structure are shown for each dye in Figures 3–5. When it comes to metal nanoparticles, spontaneous adsorption occurs if the analyte possesses a charge opposite to that of the particles. Most colloidal metal particles prepared by the reduction of metal salts (in our case, photochemically) carry a negative charge as a result of an adsorbed layer of stabilizing anions, so they will be electrostatically attracted to the nanoparticles Int. J. Mol. Sci. 2014, 15 19244 surface. If the target molecule carries the same charge as the nanoparticle, it will not interact electrostatically with the metal surface, but still, it can make contact with it by displacing an existing ion from a site on the surface [27]. Tables 1–3 indicate the corresponding peak assignments; we determined non-referenced peaks.

–  –  –

The SERS spectra show that reactive-grade heparin prepared nanoparticles (RGHep lines) lead to better SERS signals than the pharmaceutical-grade heparin products (PhGHep lines), the only differences arising from the different charges of the analytes, that is, the best interactions were obtained from the oppositely charged one (Methylene Blue) while not being the case with same-charged (Bengal) and neutral (Neutral Red) molecules. Even though some enhancement is observed, which indicates that nanoparticles have made some contact with the metallic surface, it has not been enough to quench such effects [30]; this might be due to the molecule orientation or unbound parts of it.

In the Methylene Blue SERS spectra, the peaks that result from the most enhanced signals are at 1386 and 1617 cm−1 (PhGHep AuNPs) and at 1393 and 1619 cm−1 (RGHep AuNPs). As for Rose Bengal, such peaks are located at 1324, 1478 and 1603 cm−1 (PhGHep AuNPs) and at 1322, 1489 and 1605 cm−1 (RGHep AuNPs). Finally, for Neutral Red, although signal enhancement is not very intense, the strongest interactions are indicated by the peaks at 1336 (PhGHep AuNPs) and 1374 cm−1 (RGHep AuNPs). According to the assignation in the case of MB, the aromatic rings interact the most with the metal surface, being the same for Rose Bengal. Also, the chloride ions belonging to the dye structure, promote some adhesion to the metallic surface by the displacement of ions they induce in addition to the fact that they might also induce some aggregation on the colloid-dye system, which contributes to the generation of the Rose Bengal SERS signal. Lastly, for Neutral Red, the most acute Int. J. Mol. Sci. 2014, 15 19247 peak corresponds to the C-N stretching vibration and considering that it possesses a NH2 group attached to an aromatic ring and is positively charged, it can be concluded that is the channel through which an interaction, though weak, is established.

When a molecule binds to a metal surface, it can be either physisorbed or chemisorbed. In the case of physisorption, the spectra of physisorbed molecules and free molecules are similar. However, when the molecules are chemisorbed on the metal surface, the position and relative intensities of the SERS bands are dramatically changed due to the overlapping of the molecular and metal orbitals that leads to the formation of a new metal-molecule SERS complex [31]. Here, the probe molecules have been chemisorbed in relation to the 1 mM solution prepared from each dye.

Reactive grade heparin shows better interaction with analytes than the pharmaceutical grade one.

This could be due to the higher degree of purity from the first one, with respect to pharmaceutical grade heparin, which is less pure, probably due to the fact that it is administered to humans, so its sulfation level is lower. Also, the acid nature of pharmaceutical grade nanoparticles might promote less contact between the nanoparticles surface and the analytes as will be discussed later.

2.3. IR Spectroscopy Measurements

Pages:   || 2 |

Similar works:


«Programming an Amorphous Computational Medium Jacob Beal Massachusetts Institute of Technology, Cambridge MA 02139, USA Abstract. Amorphous computing considers the problem of controlling millions of spatially distributed unreliable devices which communicate only with nearby neighbors. To program such a system, we need a highlevel description language for desired global behaviors, and a system to compile such descriptions into locally executing code which robustly creates and maintains the...»

«Life Cycle Assessment of Waste Car Tyres at Scandinavian Enviro Systems Master of Science Thesis in Chemical and Biological Engineering RAJA MUHAMMAD USMAN RAFIQUE DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, December, 2012 Life Cycle Assessment of Waste Car Tyres Master’s Thesis in Innovative and Sustainable Chemical Engineering RAJA MUHAMMAD USMAN RAFIQUE Department of Chemical and Biological Engineering CHALMERS UNIVERSITY OF...»

«Acclaim for Geoffrey Miller's THE MATING MIND Miller is an extremely talented writer, and he has produced a beautifully written book that is a genuine pleasure to read. The strength of this work, however, goes well beyond style. Miller has ambitiously described a scenario that provides insight into a number of puzzles about the human mind. —Science Fascinating. This book will be intriguing even to readers with only a superficial knowledge of evolutionary biology. —The Washington Post Book...»

«Afr. J. Ecol. 1999, Volume 37, pages 295–304 Territoriality and spatial patterns of white rhinoceros in Matobo National Park, Zimbabwe JANET L. RACHLOW, 1 ∗ JOHN G. KIE 2 and JOEL BERGER 1 1 Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV 89512, U.S.A. and 2U.S. Forest Service, Pacific Northwest Research Station, 1401 Gekeler Lane, La Grande, OR 97850, U.S.A. Abstract Boundaries associated with reserves or conservation areas may alter spatial patterns...»

«GLOBAL PROTEOMIC DETECTION OF NATIVE, STABLE, SOLUBLE HUMAN PROTEIN COMPLEXES by Pierre Claver Havugimana A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto © Copyright by Pierre Claver Havugimana 2012 Global Proteomic Detection of Native, Stable, Soluble Human Protein Complexes Pierre Claver Havugimana Doctor of Philosophy Graduate Department of Molecular Genetics University of Toronto...»

«CONTRIBUTORS Evelyn Ellerman, Centre for State and Legal Studies, Athabasca University, Athabasca, Alberta, Canada Jayne Gackenbach, Department of Psychology, Grant MacEwan College, Edmonton, Alberta, Canada Joanie Farley Gillispie, Department of Behavioral and Biological Sciences, University of California, Berkeley Extension, Mill Valley, California Ben Goertzel, Applied Research Laboratory for National and Homeland Security,Virginia Tech, National Capital Region, Arlington,Virginia Mark...»

«Responses of the hyperthermophilic archaeon Sulfolobus solfataricus to UV-light vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte DISSERTATION Vorgelegt von Dipl. Biol. Sabrina Fröls aus Frankfurt am Main Darmstadt 2008 D17 Tag der Einreichung: 09. April 2008 Tag der mündlichen Prüfung: 17. Juni 2008 1. Berichterstatterin extern : Prof. Dr. Christa Schleper 2. Berichterstatterin: Prof. Dr. Felicitas...»

«Environmental Engineering and Management Journal Aims and Scope Environmental Engineering and Management Journal is an international journal that publishes reviewed original research papers of both experimental and theoretical nature in the following areas:  environmental impact assessment;  environmental integrated management;  risk assessment and management;  chemical and biological process engineering;  environmental chemistry;  environmental protection technologies (water,...»

«THE GLOBAL CLIMATE OBSERVING SYSTEM AND ITS TERRESTRIAL PANEL http://gcos.wmo.int The Global Climate Observing System (GCOS) is an internationally coordinated network of observing systems and a programme of activities that support and improve the network. It is designed to meet evolving national and international requirements for climate observations. GCOS was an outcome of the Second World Climate Conference and was established in 1992. GCOS addresses the total climate system, including...»

«Breeding Strategies for the Fruit Crop Japanese Quince (Chaenomeles japonica) Breeding Strategies for the Fruit Crop Japanese Quince (Chaenomeles japonica) K. Rumpunena*, D. Kviklysb, S. Kauppinenc, S. Ruisad, P.M.A. Tigerstedtc a Balsgård–Department of Horticultural Plant Breeding, Swedish University of Agricultural Sciences, Kristianstad, Sweden b Lithuanian Institute of Horticulture, Babtai, Lithuania c Department of Applied Biology, University of Helsinki, Helsinki, Finland d Dobele...»

«PhD Thesis Zsolt Albert MOLECULAR BIOLOGICAL CHARACTERIZATION OF EXOCARPS OF APPLE AND BELL PEPPER IN DIFFERENT DEVELOPMENTAL STAGES AND DURING STORAGE Doctoral School of Horticultural Sciences Corvinus University of Budapest Department of Plant Physiology and Plant Biochemistry Budapest 2014 PhD School Name: Doctoral School of Horticultural Sciences Field: Crop Sciences and Horticulture Head of Ph.D. School: Prof. Dr. Magdolna Tóth, Doctor of the Hungarian Academy of Sciences, Head of...»

<<  HOME   |    CONTACTS
2016 www.dissertation.xlibx.info - Dissertations, online materials

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.