WWW.DISSERTATION.XLIBX.INFO
FREE ELECTRONIC LIBRARY - Dissertations, online materials
 
<< HOME
CONTACTS



«Chapter 5 Light and Matter: Reading Messages from the Cosmos Messages •  Interactions of Light and Matter –  The interactions determine ...»

Chapter 5

Light and Matter:

Reading Messages from the Cosmos

Messages

•  Interactions of Light and Matter

–  The interactions determine everything we see,

including what we observe in the Universe.

•  What is light?

–  Wave AND Particle

•  Electromagnetic spectrum

–  Separate light into color (in detail)

–  Tell a lot about the object

5.1 Light in Everyday Life

Our goals for learning:

•  How do we experience light?

•  How do light and matter interact?

How do we experience light?

•  The warmth of sunlight tells us that light is a form of energy •  We can measure the flow of energy in light in units of watts: 1 watt = 1 joule/s How do light and matter interact?

•  Emission •  Absorption •  Transmission –  Transparent objects transmit light –  Opaque objects block (absorb) light •  Reflection or Scattering Colors of Light Prism •  White light is made up of many different colors Separating the colors gives you important information of an object (we will learn this later in this Chapter).

Colors in Sun Light Rain drops work as prism.

Different colors of light are refracted in different angles and are separated.

Interactions of Light with Matter Reflection and Scattering Movie screen scatters light Mirror reflects in all directions light in a particular The surface of screen is not flat, so direction reflects lights in all directions.

Interactions of Light with Matter Sun light (white light) has all colors and shines a rose with all the colors. But the rose looks red, not white. – why?

Because the red rose reflects only red light.

Hence, from the red color, we can learn that the rose is made of a material that reflects only red light.

à༎ Astronomers use colors to learn about astronomical objects.

Interactions of Light with Matter Which cloth is warmer in sun light?

Black cloths – because black absorbs more lights, and that’s why it looks black (no color).

Interactions between light and matter determine the appearance of everything around us Interactions of Light with Matter Only green light can be transmitted (pass through) this material.

Interactions between light and matter determine the appearance of everything around us What have we learned?

•  How do we experience light?

–  Light is a form of energy –  Light comes in many colors that combine to form white light.

•  How does light interact with matter?

–  Matter can emit light, absorb light, transmit light, and reflect (or scatter) light.

–  Interactions between lightand matter determine the appearance of everything we see.

5.2 Properties of Light

Our goals for learning:

•  What is light?

•  What is the electromagnetic spectrum?

Light = Wave & Particle What is light?

•  Light can act either like a wave or like a particle •  Particles of light are called photons

–  –  –

Two important quantities of waves •  Wavelength is the distance between two wave peaks •  Frequency is the number of times per second that a wave vibrates up and down wavelength x frequency = wave speed Light: Electromagnetic Waves •  A light wave is a vibration of electric and magnetic fields •  Light interacts with charged particles through these electric and magnetic fields Wavelength and Frequency wavelength x frequency = speed of light = constant Particles of Light •  Particles of light are called photons •  Each photon has a wavelength and a frequency •  The energy of a photon depends on its frequency Digital camera counts the number of photons.

Wavelength, Frequency, and Energy Wavelength and Frequency λx f = c λ = wavelength, f = frequency c = 3.00 x 108 m/s = speed of light Energy E = h x f = photon energy h = 6.626 x 10-34 joule x s = photon energy Color = difference in wavelength.

Red light: longer wavelength = lower frequency = lower energy Blue light: shorter wavelength = higher frequency = higher energy What is the electromagnetic spectrum?

Electromagnetic Spectrum Color is a part of an electromagnetic spectrum that your eye can see.

Electromagnetic Spectrum

–  –  –

Different wavelengths show different things – different kinds of astronomical objects and their properties Messages •  Three types of spectrum •  What can we learn from object’s light?

Graph of Electromagnetic Spectrum Intensity = strength of light at the wavelength Wavelength What have we learned?

•  What is light?

–  Light can behave like either a wave or a particle –  A light wave is a vibration of electric and magnetic fields –  Light waves have a wavelength and a frequency –  Photons are particles of light.

•  What is the electromagnetic spectrum?

–  Human eyes cannot see most forms of light.

–  The entire range of wavelengths of light is known as the electromagnetic spectrum.

5.3 Properties of Matter

Our goals for learning:

•  What is the structure of matter?





•  What are the phases of matter?

•  How is energy stored in atoms?

What is the structure of matter?

–  –  –

Cut matter (e.g., tofu, but any matter) to half, then half, and half, half, half…. How small can we get?

Structure of Atom Cutting any material half, half, … à༎ Eventually you will find atoms.

–  –  –

Atom is made out of nucleus and electrons. Nucleus turned out to be made out of even smaller particles (proton and neutron).

Many kinds of atom Atomic Terminology •  Atomic Number = # of protons in nucleus •  Atomic Mass Number = # of protons + neutrons •  Molecules: consist of two or more atoms (H2O, CO2) Electron Orbits in Atom Electrons are orbiting around the nucleus.

Fraunhofer Lines Light and electron orbits in atoms turned out to be closely related.

If we look at Sun’s rainbow VERY (and VERY!) closely, we find some parts are black (no/little light).

Electron Orbits in Atom Electron orbits have strange shapes, but this is too advanced, and let’s forget about it now.

IMPORTANT:

•  Each atom has its own set of electron orbits.

•  The orbits are fixed. Each orbit has a fixed energy.

How is energy stored in atoms?

Energy

–  –  –

In this example, the energy of a photon is exactly the same as the energy difference between level 1 and level 2.

The energy difference btw two levels = photon energy à༎ wavelength Line spectrum

–  –  –

Energy levels of Hydrogen Chemical Fingerprints •  Each type of atom has a unique spectral fingerprint Chemical Fingerprints •  Observing the fingerprints in a spectrum tells us which kinds of atoms are present Aurora Green: Oxygen line emissions Red: Nitrogen line emissions

–  –  –

wavelength The dark pattern (absorption line spectrum) tells us what atoms are there. We can compare sun’s spectrum with the spectrum of atoms measured in laboratory and find what atoms are in the Sun.

What have we learned?

•  What is the structure of matter?

–  Matter is made of atoms, which consist of a nucleus of protons and neutrons surrounded by a cloud of electrons •  What are the phases of matter?

–  Adding heat to a substance changes its phase by breaking chemical bonds.

–  As temperature rises, a substance transforms from a solid to a liquid to a gas, then the molecules can dissociate into atoms –  Stripping of electrons from atoms (ionization) turns the substance into a plasma What have we learned?

•  How is energy stored in atoms?

–  The energies of electrons in atoms correspond to particular energy levels.

–  Atoms gain and lose energy only in amount corresponding to particular changes in energy levels.

5.4 Learning from Light

Our goals for learning:

•  What are the three basic types of spectra?

•  How does light tell us what things are made of?

•  How does light tell us the temperatures of planets and stars?

•  How do we interpret an actual spectrum?

What are the three basic types of spectra?

Continuous Spectrum

–  –  –

Spectra of astrophysical objects are usually combinations of these three basic types Emission Line Spectrum •  A thin or low-density cloud of gas emits light only at specific wavelengths that depend on its composition and temperature, producing a spectrum with bright emission lines Absorption Line Spectrum •  A cloud of gas between us and a light bulb can absorb light of specific wavelengths, leaving dark absorption lines in the spectrum

–  –  –

•  The spectrum of a common (incandescent) light bulb spans all visible wavelengths, without interruption All wavelengths are completely filled.

How does light tell us what things are made of?

–  –  –

•  Molecules have additional energy levels because they can vibrate and rotate -- different patterns of line emission and absorption Energy Levels of Molecules •  The large numbers of vibrational and rotational energy levels can make the spectra of molecules very complicated •  Many of these molecular transitions are in the infrared part of the spectrum How does light tell us the temperatures of planets and stars?

Thermal Radiation

–  –  –

Your body emits light, too, but you cannot see it with your eye because your light is in the range of infrared wavelength (outside the range that your eye can see).

Thermal Radiation •  Nearly all large or dense objects emit thermal radiation, including stars, planets, you… •  An object’s thermal radiation spectrum depends on only one property: its temperature •  Themral radiation spectrum is a continuous spectrum.

Properties of Thermal Radiation Hotter objects 1.  emit more light at all frequencies per unit area.

2.  emit photons with a higher average energy.

3.  are bluer (whiter).

–  –  –

Color of stars depends on their temperature.

More massive stars have higher temperature, therefore are bluer (whiter) than less massive stars (Chapter 15) How do we interpret an actual spectrum?

•  By carefully studying the features in a spectrum, we can learn a great deal about the object that created it.

What have we learned?

•  What are the three basic type of spectra?

–  Continuous spectrum –  Emission line spectrum –  Absorption line spectrum •  How does light tell us what things are made of?

–  Each atom has a unique fingerprint.

–  We can determine which atoms something is made of by looking for their fingerprints in the spectrum.

What have we learned?

•  How does light tell us the temperatures of planets and stars?

–  Nearly all large or dense objects emit a continuous spectrum that depends on temperature.

–  The spectrum of that thermal radiation tells us the object’s temperature.

•  How do we interpret an actual spectrum?

–  By carefully studying the features in a spectrum, we can learn a great deal about the object that created it.

5.5 The Doppler Effect

Our goals for learning:

•  How does light tell us the speed of a distant object?

•  How does light tell us the rotation rate of an object?

How does light tell us the speed of a distant object?

–  –  –

•  We generally measure the Doppler Effect from shifts in the wavelengths of spectral lines à༎ From the Doppler shift, we can measure the speed of an object along our line-of-sight.

Application of Doppler Shifts in Astronomy Rotation of Galaxies With the Doppler shift, We can measure the rotation velocity of galaxies.

Note: This is how the dark matter was found in the first place.

Spectrum of a Rotating Object •  Stars look like a point (not spatially resolved), and we cannot measure velocity changes along their radii.

•  But still, spectral lines indicate rotation. They are wider when star rotates faster.

Search for Unseen planet Around Other Stars.

Timing measurement Expansion of the Universe Most galaxies are moving away from you, because the Universe is expanding. Therefore, most galaxies’ spectra are redshifted.

What have we learned?

•  How does light tell us the speed of a distant object?

–  The Doppler effect tells us how fast an object is moving toward or away from us.

•  Blueshift:objects moving toward us •  Redshift: objects moving away from us •  How does light tell us the rotation rate of an object?

–  The width of an object’s spectral lines can tell us how



Similar works:

«A L I V E LY E L E C T R O N I C C O M P E N D I U M O F R E S E A R C H, N E W S, R E S O U R C E S, A N D O P I N I O N Astronomy Education Review 2011, AER, 10, 010101-1, 10.3847/AER2010040 Astrology Beliefs among Undergraduate Students Hannah Sugarman Department of Astronomy, University of Arizona, Tucson, Arizona 85721 Chris Impey Department of Astronomy, University of Arizona, Tucson, Arizona 85721 Sanlyn Buxner Department of Astronomy, University of Arizona, Tucson, Arizona 85721...»

«Jets and Accretion Disks in Astrophysics A brief review Linda A. Morabito and David Meyer Department of Astronomy, Victor Valley College, Victorville, CA 92395 linda.morabito@vvc.edu Abstract The significance of jets and accretion disks in Astrophysics may be growing far beyond any single example of recent finds in the scientific journals. This brief review will summarize recent, significant manifestations of accretion disk powered jets in the universe. We then introduce supplemental...»

«THE RESPONSIVE COSMOS: AN ENQUIRY INTO THE THEORETICAL FOUNDATION OF ASTROLOGY BY JAMES BROCKBANK Submitted for a PhD in Theology and Religious Studies TABLE OF CONTENTS Acknowledgements Abstract, p5. Introduction, p6. Chapter One: Astrologers and the Empirical, p21. Chapter Two: Different responses to the lack of empirical evidence, p57. Chapter Three: The Responsive Cosmos, p75. Chapter Four: Astrological Methodology, p105. Chapter Five: Divinatory astrology and the scientific researchers,...»

«Accepted pre-publication version Published at: Public Understanding of Science 19(1): (2010) 16-33. Negotiating Uncertainty: Asteroids, Risk and the Media Felicity Mellor ABSTRACT Natural scientists often appear in the news media as key actors in the management of risk. This paper examines the way in which a small group of astronomers and planetary scientists have constructed asteroids as risky objects and have attempted to control the media representation of the issue. It shows how scientists...»

«ACVA Journal 2:2 Page 3 Krishnamurti Padhdhati: A New System of Vedic Astrology T.R. Raghunath, Ph.D. Dr. Raghunath offers a lucid introduction to the one of the most exciting new developments in Jyotish. K.S. Krishnamurti (1908 1972) is one of the original and systematic astrological thinkers of India. Today, his astrological system, known as K.P. (Krishnamurti Padhdhati), has dedicated practitioners in different parts of India, but it is generally excluded from consideration in the mainstream...»

«Nitrate Deposition following an Astrophysical Ionizing Radiation Event Ben Neuenswander, Specialized Chemistry Center, University of Kansas, Lawrence, KS 66047, USA Adrian Melott, Department of Physics and Astronomy, University of Kansas Abstract It is known that a gamma ray burst (GRB) originating near the Earth could be devastating to life. The mechanism of ozone depletion and subsequent increased UVB exposure is the primary risk, but models also show increased nitrification culminating in...»

«XII IAU HAMBURG 1964 DAILY NEWS BULLETIN 1 WEDNESDAY, AUGUST 26 SPEECHES OF INAUGURAL CEREMONY 24 AUGUST 1964 Senator Dr H. Biermann-Ratjen, Hamburg Ladies and Gentlemen : It is indeed a great honour for me to have been as ked on behalf of the Senate of the Free and Hanseatic City of Hamburg to welcome the astronomers from fortytwo countries assembled here to attend the twelfth General Assembly of the International Astronomic Union. We are proud that our city has been chosen for a congress of...»

«Survival Strategies for African American Astronomers and Astrophysicists JC Holbrook University of California, Los Angeles Abstract The question of how to increase the number of women and minorities in astronomy has been approached from several directions in the United States including examination of admission policies, mentoring, and hiring practices. These point to departmental efforts to improve conditions for some of the students which has the overall benefit of improving conditions for all...»

«SCHOOL OF PHYSICS AND ASTRONOMY HONOURS HANDBOOK – 2016-17 CONTENTS Page Introduction 3 Aims of our Teaching Programmes 4 Honours Entry Requirements 5 Bachelor’s and Master’s degrees 6 QAA and SCQF Requirements 6 Coordinators/Advisers 6 Selection of Modules 7 Preparation 8 Tutorials 8 Transferable Skills 9 Practical Work 9 Projects 10 Student Work 12 Monitoring and Assessment 13 Academic Alerts 14 Penalties for late submission and Word/Space Limit Issues 15 Absence from Classes, Tests, or...»

«Automatic Mapping of Real Time Radio Astronomy Signal Processing Pipelines onto Heterogeneous Clusters Terry Esther Filiba Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-147 http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-147.html August 15, 2013 Copyright © 2013, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted...»

«SAPPORO: A way to turn your graphics cards into a GRAPE-6 Evghenii Gaburov∗,c,a,b, Stefan Harfsta,b, Simon Portegies Zwarta,b,c a Astronomical Institute “Anton Pannekoek”, University of Amsterdam b Section Computational Science, University of Amsterdam c Leiden Observatory, University of Leiden the Netherlands Abstract We present Sapporo, a library for performing high-precision gravitational N -body simulations on NVIDIA arXiv:0902.4463v2 [astro-ph.IM] 5 Mar 2009 Graphical Processing...»

«1 Standard Photometric Systems Michael S. Bessell Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611, Australia KEYWORDS: methods:data analysis techniques: photometric,spectroscopic catalogs. ABSTRACT: Standard star photometry dominated the second part of the 20th century reaching its zenith in the 1980s. It was introduced to take advantage of the high sensitivity and large dynamic range of photomultiplier tubes compared to photographic plates....»





 
<<  HOME   |    CONTACTS
2016 www.dissertation.xlibx.info - Dissertations, online materials

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.