FREE ELECTRONIC LIBRARY - Dissertations, online materials

Pages:   || 2 |

«Copyright © 1966-2014 John T. Neer At the completion of the year, I gave Feynman a copy of my notes which he appreciated and in return signed my FLP ...»

-- [ Page 1 ] --

Copyright © 1966-2014 John T. Neer

At the completion of the year, I

gave Feynman a copy of my notes

which he appreciated and in

return signed my FLP vol 1.

This picture of Feynman is as I remember him coming to the Research

labs. Always casual in dress and always with chalk in hand

Copyright © 1966-2014 John T. Neer

Lecture Organization Preface

When Feynman started this lecture series on astronomy as he referred to it, it really

emphasized the astrophysics more than "classical" Astronomy. He did not have a definitive roadmap of his topics over the ensuing 40 weeks with 2 hours a session weekly.

As I have been reviewing and preparing these notes for release, I have been inserting more current findings, particularly for space observatories, to relate Feynman's lectures to today's "view" of the universe. Feynman's lectures covered a broad spectrum of topics which provide the reader with a rich foundation in the Astronomy, Cosmology and Astrophysics.

I undestand and appreciate the significant advances in astrophysics and cosmology that have occurred since the time these notes were created and look forward to those whose knowledge and experience can add to the content herein.

Bookmarks are provided w boson, 110 When Feynman was giving these lectures on astronomy, astrophysics and cosmology he was learning the material/subject matter as he was presenting it. In typical Feynmanism he went after the physics and then used the math language to explain the underlying physics.

On numerous occasions he would start off on the blackboard and work his way across until his mathematical development was not correct. He would stop and stare at what he had done then walk back to find out where he had made a mistake. The math was not coming out with the right physics which he somehow intuitively knew. Maybe it was a first order assumption; a near field or far field simplification or maybe an integral expansion error. To observe him stop and correct himself in real time was to observe a genius in action.

Clearly these lecture topics have been superceded by tremendous theoretical and experimental work in astrophysics and cosmology. I have attempted to insert some updated and related material that can be found readily on the web. Where I have inserted a wikipedia reference, I have attached their spherical logo. I would expect those who are engaged in the subject matter here will be able to contribute and expand on the new related material. I have included these "emended" additions without attempting in any way to correct or change Feynman's original lecture contents. A more professional errata/peer review would be of value but something that I leave tothe reader & reviewers.

–  –  –

Along the way I have elected to insert some imagery/pictures from current ground and space observatories where it seemed appropriate. Again, hot links to videos and other professional sources would enrich these notes.

The references here were my supplement to the lectures. Feynman never called out a reading reference I have updated my notes here in an attempt to insert some of the interesting experimental discoveries that have come about since this lecture series was presented in the '66-'67 time frame.

Our venture into space have opened our perspective on the complexities of the universe and our place in it. Communication satellites caused Penzias and Wilson to "tune" into the microwave "noise" degrading our earliest global satellite services. Advanced electro-optical sensors and telescope, e.g. Hubble, opened our eyes to the wonders and mysteries of the universe.

Sophisticaed microwave receivers permitted us to tune in more precisely to the subtlies of earliest structures of the universe after the "Big Bang" was discovered.

Our earliest ventures in space for global communications and national security purposes unlocked the window into our understanding of Cosmology, Astrophysics and Astronomy. For all those who took up the exploratory and theoretical journey into the unknown, these notes might provide an interesting historical perspective on how far we have come in our understanding of our universe and our place in it. I would invite those engaged in such fascinating pursuits to emend these notes with their findings and thoughts. However, always remember my goal is to preserve the true Feynmanism in these 1966-67 lectures. Feynman had a lot of fun with these lectures and it was certainly a rare treat to sit in and capture his talks.

Feynman liked to create his own shorthand notations.

Farthest/oldest Galaxy Galaxy in a nebulae-NCG 922

–  –  –

The experiment left the perplexing question: without any anisotrophic structure left by this background radiation where were the "seeds" that gave birth to the galactic & stellar structure?

–  –  –

With the COBE success both NASA and ESA planned and deployed more advanced microwave sensors and detectors, specifically the NASA Wilkinson Microwave Anisotrophic Probe, WMAP, and ESA's Planck satellite.

WMAP's improved microwave sensors and its unique operational orbit out at "L2" provided not only an improved map quality of the microwave background radiation that COBE detected but it also discovered other rather remarkable features of our universe. Here is an image of WMAP's

improved anisotrophic mesurements:

WMAP provided a the following important

cosmological and astophysical findings:

I include them here because of the significant implications of all of the the findings on cosmology and our understanding of our universe.

WMAP's Top Ten- source: http://map.gsfc.nasa.gov/ NASA's Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the Cosmic Microwave Background (CMB) radiation (the oldest light in the universe) and produced the first fine-resolution (0.2 degree) full-sky map of the microwave sky WMAP definitively determined the age of the universe to be 13.75 billion years old to within 1% (0.11 billion years) WMAP nailed down the curvature of space to within 0.6% of "flat" Euclidean, improving on the precision of previous award-winning measurements by over an order of magnitude The CMB became the "premier baryometer" of the universe with WMAP's precision determination that ordinary atoms (also called baryons) make up only 4.6% of the universe (to within 0.2%) WMAP's complete census of the universe finds that dark matter (not made up of atoms) make up 22.7% (to within 1.4%) WMAP's accuracy and precision determined that dark energy makes up 72.8% of the universe (to within 1.6%), causing the expansion rate of the universe to speed up. - "Lingering doubts about the existence of dark energy and the composition of the universe dissolved when the WMAP satellite took the most detailed picture ever of the cosmic microwave background (CMB)." - Science Magazine 2003, "Breakthrough of the Year" article WMAP has mapped the polarization of the microwave radiation over the full sky and discovered that the universe was reionized earlier than previously believed. - "WMAP scores on large-scale structure. By measuring the polarization in the CMB it is possible to look at the amplitude of the fluctuations of density in the universe that produced the first galaxies. That is a real breakthrough in our understanding of the origin of structure." - ScienceWatch: "What's Hot in Physics", Simon Mitton, Mar./Apr. 2008 WMAP has started to sort through the possibilities of what transpired in the first trillionth of a trillionth of a second, ruling out well-known textbook models for the first time.

The statistical properties of the CMB fluctuations measured by WMAP appear "random"; however, there are several hints of possible deviations from simple randomness that are still being assessed.

Significant deviations would be a very important signature of new physics in the early universe.

WMAP has put the "precision" in "precision cosmology" by reducing the allowed volume of cosmological parameters by a factor in excess of 30,000. The three most highly cited physics and astronomy papers published in the new millennium are WMAP scientific papers--- reflecting WMAP's enormous impact.

The Planck Satellite improved further on WMAP's performance & measurements:


Back to the Feynman lectures in 1966:

In physical cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: Λ) is equivalent to an energy density in otherwise empty space. It was originally proposed by Albert Einstein as a modification of his original theory of general relativity to achieve a stationary universe. Einstein abandoned the concept after the observation of the Hubble redshift indicated that the universe might not be stationary, as he had based his theory on the idea that the universe is unchanging.[1] However, a number of observations including the discovery of cosmic acceleration in 1998 have revived the cosmological constant, and the current standard model of cosmology includes this term In physical cosmology and astronomy, dark energy is a hypothetical form of energy that permeates all of space and tends to accelerate the expansion of the universe.[1] Dark energy is the most accepted hypothesis to explain observations since the 1990s that indicate that the universe is expanding at an accelerating rate. In the standard model of cosmology, dark energy currently accounts for 73% of the total mass–energy of the universe.[2] Two proposed forms for dark energy are the cosmological constant, a constant energy density filling space homogeneously,[3] and scalar fields such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant. The cosmological constant is physically equivalent to vacuum energy. Scalar fields which do change in space can be difficult to distinguish from a cosmological constant because the change may be extremely slow.

Gravity Probe B Verifying "framedragging" Here is where Feynman starts in on "black stars(aka black holes) as he called them.

See figure below

–  –  –

Feynman alluded to but did not pursue the transition and further collapse of the white dwarf to the neutron star state Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation, especially visible light. In radiative transfer, it describes the absorption and scattering of radiation in a medium, such as a plasma, dielectric, shielding material, glass, etc. An opaque object is neither transparent (allowing all light to pass through) nor translucent (allowing some light to pass through). When light strikes an interface between two substances, in general some may be reflected, some absorbed, some scattered, and the rest transmitted (also see refraction). Reflection can be diffuse, for example light reflecting off a white wall, or specular, for example light reflecting off a mirror. An opaque substance transmits no light, and therefore reflects, scatters, or absorbs all of it. Both mirrors and carbon black are opaque. Opacity depends on the frequency of the light being considered. For instance, some kinds of glass, while transparent in the visual range, are largely opaque to ultraviolet light. More extreme frequency-dependence is visible in the absorption lines of cold gases. Opacity can be quantified in many ways; for example, see the article mathematical descriptions of opacity Here starts two important topics that Feynman tore into as only he could Question: Where do the higher elements come from? Hydrogen burning alone can't explain the process by which the higher elements are formed?

Another side bar about incompetence in the workplace. Note it is 2 years later that the Peter Principle was published by Laurence Peter, then at USC.


Feynman on an accidental universe?

Stellar nucleosynthesis refers to the assembly of the natural abundances of the chemical elements by nuclear reactions occurring in the cores of stars.

Those stars evolve (age) owing to the associated changes in the abundances of the elements within.

Those stars lose most of their mass when it is ejected late in the stellar lifetimes, thereby enriching the interstellar gas in the abundances of elements heavier than helium. For the creation of elements during the explosion of a star, the term supernova nucleosynthesis is used. The goal is to understand the vastly differing abundances of the chemical elements and their several isotopes as a process of natural history.

Binding energy is the mechanical energy required to disassemble a whole into separate parts. A bound system typically has a lower potential energy than its constituent parts; this is what keeps the system together—often this means that energy is released upon the creation of a bound state.

Worth inserting here is more on Feynman's introduction of the "W" coupling force In today's understanding this is the W-boson which was followed by the Z Boson.

From Wikipedia:

Following the spectacular success of quantum electrodynamics in the 1950s, attempts were undertaken to formulate a similar theory of the weak nuclear force. This culminated around 1968 in a unified theory of electromagnetism and weak interactions by Sheldon Glashow, Steven Weinberg, and Abdus Salam, for which they shared the 1979 Nobel Prize in Physics.[6] Their electroweak theory postulated not only the W bosons necessary to explain beta decay, but also a new Z boson that had never been observed.

W bosons The W bosons are best known for their role in nuclear decay. Consider, for example, the beta decay of cobalt-60, an important process in supernova explosions.

It is worth pointing out here that this Feynman discussion of the need for the "W Boson" was in early 1967 in advance of the "1968...weak interactions by Glashow, Weinberg and Salam.

Interesting Feynman came in from this nuclear synthesis perspective which is a different path than from unifying electromagnetism. Typical Feynman like his sum over all histories approach to quantum theory.

The next lecture begins with population I and II stars.

See below "Cat's Eye" Planetary Nebula-Hubble image Multiwavelength X-ray, infrared, and optical compilation image of Kepler's supernova remnant, SN 1604.

Pages:   || 2 |

Similar works:

«Digital Zenith Cameras – State-of-the-Art Astrogeodetic Technology for Australian Geodesy Christian HIRT, Beat BÜRKI, Sébastien GUILLAUME and Will FEATHERSTONE Key words: digital zenith cameras, vertical deflections, geodetic astronomy, geoid, quasigeoid SUMMARY Over recent years, significant progress has been made in astrogeodetic research with the development of digital zenith camera systems (DZCSs) at ETH Zurich, Switzerland, and the University of Hanover, Germany. The use of charged...»

«MILLISECOND X-RAY PULSES FROM CYGNUS X-1 J. F. Dolan Department of Astronomy San Diego State University San Diego, CA 92182-1221 tejfd@sciences.sdsu.edu ABSTRACT X-ray pulses with millisecond-long FWHM gave been detected in RXTE (Rossi X-Ray Timing Explorer) observations of Cyg X-1. Their identity as short-timescale variations in the Xray luminosity of the source, and not stochastic variability in the X-ray flux, is established by their simultaneous occurrence and similar pulse structure in two...»

«Rep. Lundy Field Soc 42 THE MEGALITHIC ASTRONOMY OF LUNDY: EVIDENCE FOR THE REMAINS OF A SOLAR CALENDAR By R. W. E. FARRAH South Light, Lundy, GPO Bidcford, North Devon, EX39 2L Y or 4 Railway Cottages, Long Marton, Appleby, Cumbria CA 16 6BY INTRODUCTION Many will be familiar with the Midsummer Solstice (Sol =sun, stice = stand, the sun' s standstill ) alignment at Stonehenge in which the sun ri ses above the hee l stone, an outlier to the north-east, when viewed from the centre of the...»

«http://nssdc.gsfc.nasa.gov/image/planetary/comet/sl9pre_hst.jpg Tidal Heating of Moons http://photojournal.jpl.nasa.gov/catalog/PIA11688 http://www.nasa.gov/multimedia/imagegallery /image_feature_758.html outreach@astronomy.nmsu.edu http://astronomy.nmsu.edu This presentation is about something familiar to us, tides, in unfamiliar settings like moons around other planets. Ocean tides on Earth may seem boring, but the same mechanism can cause volcanoes and geysers on other moons and even rip...»

«Astro2010 State of the Profession Position Paper (March 2009) Astroinformatics: A 21st Century Approach to Astronomy Primary Author: Kirk D. Borne, Dept. of Computational and Data Sciences, 4400 University Drive MS 6A2, George Mason University, Fairfax, VA 22030 USA (kborne@gmu.edu).Abstract: Data volumes from multiple sky surveys have grown from gigabytes into terabytes during the past decade, and will grow from terabytes into tens (or hundreds) of petabytes in the next decade. This...»

«PRZYKŁADOWY EGZAMIN Z JĘZYKA ANGIELSKIEGO POZIOM B2 Answer Sheet PAPER I. LISTENING (14 see: points) PAPER II. READING (28 points) PART 1 Read the following text and decide whether the statements are TRUE or FALSE : UWAGA: Zamiast tego polecenia może być: Choose the best answer A, B or C. 15. Astronomers are sure that there are intelligent species outside Earth. 16. Stephen Hawking claims that aliens’ visit on Earth would be beneficial to humans. 17. He believes that we might not be alone...»

«Summit on Cost in Higher Education Monday, Oct. 21, 2013 Federal Reserve Bank of Boston Speaker and Panelist Biographies Neal Abraham Neal Abraham is Five College Professor of Physics and the executive director of Five Colleges, Inc., one of the oldest and most successful higher education consortia in the U.S. (serving Amherst, Hampshire, Mount Holyoke and Smith colleges and the University of Massachusetts Amherst). Prior to assuming his current position in August 2009, he served for 11 years...»

«Enabling global access to astronomy multimedia resources Authors: Lars Lindberg Christensen Adrienne Gauthier Robert Hurt Ryan Wyatt Bruce Berriman (contributor) Curtis Wong (contributor) Virtualastronomy.org -2Virtual Astronomy Multimedia Project Project Description September 2007 http://www.virtualastronomy.org Table of Contents Table of Contents Executive Summary 1. The VAMP Vision 2. Communicating Astronomy 3. The Problem: Haphazard Access to Astronomy Imagery 4. The VAMP Solution VAMP...»

«MURRAY GELL-MANN (b. 1929) INTERVIEWED BY SARA LIPPINCOTT July 17 and 18, 1997 Photo ID RFB70.2-4 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Physics, particle physics Abstract An interview in two sessions, July 1997, with Murray Gell-Mann, Robert Andrews Millikan Professor of Theoretical Physics, emeritus. Dr. Gell-Mann was on the faculty of Caltech’s Division of Physics, Mathematics, and Astronomy from 1955 until 1993. In this anecdotal interview tracing...»

«The Art and Science of Visual Astronomical Observations, 1E © 2012 Brian Cudnik Table of Contents Book Overview and Purpose Purpose Introduction Chapter 1 – Introduction to the Art and Science of Visual Astronomy Waiting for Nightfall.May 24, 2009 Why do we do these things? Why it is an Art and how we can be Scientifically Useful The Science The Scope of this Book Ch. 2 Visual versus Electronic Visual versus Photographic (or Electronic) Appearance Pros and cons of visual versus electronic...»

«UNIVERSITY OF WISCONSIN MADISON Department of Astronomy Astronomy 113 Laboratory Manual Fall 2011 Professor: Snezana Stanimirovic 4514 Sterling Hall sstanimi@astro.wisc.edu TA: Natalie Gosnell 6283B Chamberlin Hall gosnell@astro.wisc.edu Contents Introduction 1 Celestial Rhythms: An Introduction to the Sky 2 The Moons of Jupiter 3 Telescopes 4 The Distances to the Stars 5 The Sun 6 Spectral Classification 7 The Universe circa 1900 8 The Expansion of the Universe ASTRONOMY 113 Laboratory...»


<<  HOME   |    CONTACTS
2016 www.dissertation.xlibx.info - Dissertations, online materials

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.