WWW.DISSERTATION.XLIBX.INFO
FREE ELECTRONIC LIBRARY - Dissertations, online materials
 
<< HOME
CONTACTS



Pages:   || 2 | 3 | 4 | 5 |   ...   | 15 |

«UNIVERSITY OF WISCONSIN - MADISON Department of Astronomy Astronomy 113 Laboratory Manual Fall 2011 Professor: Snezana Stanimirovic 4514 Sterling ...»

-- [ Page 1 ] --

UNIVERSITY OF WISCONSIN - MADISON

Department of Astronomy

Astronomy 113

Laboratory Manual

Fall 2011

Professor: Snezana Stanimirovic

4514 Sterling Hall

sstanimi@astro.wisc.edu

TA: Natalie Gosnell

6283B Chamberlin Hall

gosnell@astro.wisc.edu

Contents

Introduction

1 Celestial Rhythms: An Introduction to the Sky

2 The Moons of Jupiter

3 Telescopes

4 The Distances to the Stars

5 The Sun

6 Spectral Classification

7 The Universe circa 1900 8 The Expansion of the Universe ASTRONOMY 113 Laboratory Introduction Astronomy 113 is a hands-on tour of the visible universe through computer simulated and experimental exploration. During the 14 lab sessions, we will encounter objects located in our own solar system, stars filling the Milky Way, and objects located much further away in the far reaches of space.

Astronomy is an observational science, as opposed to most of the rest of physics, which is experimental in nature. Astronomers cannot create a star in the lab and study it, walk around it, change it, or explode it. Astronomers can only observe the sky as it is, and from their observations deduce models of the universe and its contents. They cannot ever repeat the same experiment twice with exactly the same parameters and conditions. Remember this as the universe is laid out before you in Astronomy 113 – the story always begins with only points of light in the sky. From this perspective, our understanding of the universe is truly one of the greatest intellectual challenges and achievements of mankind.

The exploration of the universe is also a lot of fun, an experience that is largely missed sitting in a lecture hall or doing homework. The primary goal of theses labs is to bring you closer to the reality of astronomical research, and in so doing to the experience of science. Of course, this would be best done at night with real telescopes, but the vagaries of Madison weather make this impractical with large classes. Fortunately, computer simulation software does remarkably well in recreating the experience of working at telescopes, including some of the largest in the world. That having been said, the lab does include voluntary night viewing sessions at Washburn observatory giving you a taste of the wonders of the night sky.

These labs are designed to provide you with opportunities to explore and discover. Always remember that this is your exploration – different students will follow different paths, all of which can lead to interesting results. Don’t be afraid to try things out and to experiment. Trial and error is a valid way to explore a new environment and you cannot break the software (if you do,it’s not your fault – just get your instructor to restart the software and you will be good to go again).

The organizational details for this lab can be found in the lab syllabus and on the web:

http://www.astro.wisc.edu/~sstanimi/ast_113_fall11.html Be inquisitive and collaborate You are always welcome to give us feedback and suggestions about this lab. And don’t ever hesitate to ask if you have a question: You are the best judge of what you have and have not understood. The goal of this lab is for you to learn. The best way to reach that goal is to ask questions – either to your lab partners or to your instructor. You will find that asking questions is often the best way to approach a problem, and every scientific endeavor; every research project (in Astronomy and all other sciences) begins with a question.

The labs in Astronomy 113 are best done in groups. For that reason, you will team up with at least one other lab member (but no more than 3) to go through the lab together. This is another good analogy to real world astronomical research: Most projects in astronomy require collaborations between people with different expertise. You will find that you reach a much deeper level of understanding of something after trying to explain it to somebody else and after you have discussed a question with somebody else. As you go through the lab, discuss the questions in the manual and try to explain your answers to these questions to your lab partner and to listen to their explanation. The only time collaboration in the lab is not allowed is, of course, during the quizzes.

Computers:

As mentioned above, most of this lab is computer based. Sterling 3517 provides a number of iMac computers. The labs are very easy to operate and the software is very user friendly. Your instructor will help you with all computer related questions – the computers are only a tool to bring you closer to real astronomical observations. Your time in the lab is best spent exploring the questions and tasks in the lab manual, rather than fighting with the computer. Again, if you have trouble with the operation of the computers, ask your instructor or lab partners – the earlier the better (to get you going again so you can finish the lab in time, or even ahead of time).

Final thought:

Remember: This lab is a chance for you to explore and to get a taste of what astronomical research is like. Use all the resources you have available – the regular lab hours, the open labs/office hours, the web, E-mail, our mail boxes, your home computers, your text books and notes from Astronomy 100 or 103, and whatever else you can think of. Most importantly, though: Have fun and enjoy the hands on tour through our universe!





ASTRONOMY 113 Laboratory

Celestial Rhythms:

An Introduction to the Sky

Introduction and Goals The sky is a beautiful and fascinating stage upon which celestial dances are performed nightly. The sky is also our window on the Universe; mankind's first cosmological inquiries were inspired by these motions of the heavens. Over the centuries we have become more and more disconnected from the sky, even as our understanding of the Universe becomes greater. The goal of this lab is to reintroduce you to the sky, and to develop in you a deeper knowledge of its arrangement and motions.

Of course, this lab would best be done under the real night sky. Unfortunately we cannot guarantee clear skies in Madison, nor do we have the luxury of many years or the wherewithal to fly to distant lands.

However, we do have the virtual reality of Voyager, an electronic planetarium providing a rich array of observing opportunities.

We encourage you to explore with Voyager beyond the instructions of the lab. Don't worry if you go off on an exploration and get "lost" -- the TA can easily bring you back to any point in the lab. And you are encouraged to ask questions during the lab about anything you may find.

Format

The format of the text in this lab is designed to clearly distinguish different purposes:

Text in normal font guides you through the lab.

• Text in bold provides instructions for operating Voyager.

Underlined text identifies key words or concepts to be learned.

Text in italics is supplementary information for your pleasure.

Q1: Questions in boxes must be answered in your lab book.

Before You Come to Class...

Read the lab completely. Your time in the lab is best used observing the "sky", not reading this manual.

Bring to class this lab manual, your lab book, a pencil or erasable pen, a straight edge, and a scientific calculator.

A pre-lab is due at the beginning of the second lab session (i.e., the second week of this lab).

Schedule This lab is designed to be completed in three lab sessions. You should be well into if not completed Section 4 in the first lab session, through at least Section 6 in the second lab section, and then complete the lab in the third lab session.

Section 1: Sunset It is dusk, and the Sun has just set. You are standing in a meadow, looking toward the northern horizon.

Above you is the sky (no stars yet!) and below you is the ground. Curiously, there are letters on the horizon indicating which direction you are facing (north, south, east and west). You turn your head to

look in different directions:

• Move the horizontal scrollbar with the left and right arrows, or by dragging the scrollbar tab. (Note that when you grab the scrollbar tab, a compass appears to show the present direction.) You can also maneuver on the sky with the arrows on the keyboard.

• Return to looking north.

As the sky gets darker, more and more stars appear in the sky:

• Turn on the stars. (Display menu to Stars; select Show Stars, then click OK)

Now you tilt your head back to look at the stars overhead:

• Move the vertical scrollbar with the up and down arrows, and by grabbing the scroll bar.

When you grab the scroll bar, an indicator appears, showing the angle above the horizon at which you are looking.

• Find the point in the sky marked "zenith."

The zenith is the point directly overhead. Of course, you will never see it marked in the real night sky!

• Lower your head (move the vertical scrollbar) so that the "North" is just above the bottom of the screen.

Section 2: Figures in the Sky At first glance, the stars appear to be scattered at random in the sky. But it is the nature of humans to organize, and archeological records show that all civilizations have seen patterns in the stars, or constellations. The stars were thought to be in the realm of the gods, and often the constellations were linked to religion and myth. In Western cultures the constellations typically derive from Greek and Roman mythology, such as Aries, Leo, Andromeda, Orion, Hercules and Gemini. These patterns gave an organization to the sky that was essential for its study. Indeed, some people believe that many myths were made up for the sole purpose of remembering star patterns. Today, while few give any spiritual significance to the constellations, every culture still uses constellations to guide their way through the sky.

Since the constellations are simply mnemonics, there is no "right" way to group stars. Different civilizations have created different sets of constellations from the same night sky. However, there are certain groupings of stars that are so distinctive that every civilization has grouped them together -although not always representing the same thing. One such group of stars is the one we call the Big Dipper, also seen as a Starry Plough in England, as a Wagon in Europe and Israel, and as the

Government in ancient China! Find the Big Dipper in the Voyager sky. Once you have found it:

• Turn on the constellation lines and labels. (Display menu to Constellations; click the tab Lines and Labels, then select Show Constellation Lines and Show Constellation Labels)

• Turn on the constellation figures. (While still in the Constellations panel, click on the tab Figures, then select Show Mythological Figures and click OK) The Big Dipper is actually the body and tail of Ursa Major, the Large Bear.

• Use the scrollbars to wander around the sky.

How many constellations do you recognize?

In ancient times the 48 constellations catalogued by Ptolemy were widely accepted, but as astronomy became more precise (and as the skies of the southern hemisphere were included), many more constellations were added. There are now 88 constellations, as established by the International Astronomical Union in 1930. At that time boundaries were established for each constellation, so every star in the sky falls in exactly one constellation. If you wish to see the boundaries, turn on Constellation Boundaries (Display menu to Constellations; click the tab Boundaries and Regions, select Show Boundaries and click OK). Be sure to turn the boundaries off again when you’re finished!

Section 3: Coordinates in the Sky Constellations are a reasonable system of organization for "naked eye" observations, but suppose that you wanted to direct someone to a faint comet that you just discovered in your telescope. It would hardly do to tell her to point her telescope just to the left of the nose of Pegasus! Astronomers have developed several coordinate systems to solve this problem. We'll introduce you to one in this lab -- the altitude-azimuth coordinate system Altitude and azimuth are just more sophisticated versions of your natural inclinations. The position of a star can be described by its altitude angle above the horizon and its azimuth angle around the horizon (analogous to a compass direction, like "southeast"). Altitude is measured from 0˚ at the horizon to 90˚ at the zenith. Azimuth is measured around the horizon from north to east. So north has an azimuth of 0˚, east has an azimuth of 90˚, south has an azimuth of 180˚, and west has an azimuth of 270˚.

• Move the horizontal scrollbar to look north again, with the "North" just above the bottom of the screen.

• Turn off the Constellation Figures. (Display menu to Constellations to Figures, then deselect Show Mythological Figures and click OK)

• Open the Coordinates Panel. (Window menu to Coordinates Panel) In addition to several other values in the Coordinates Panel, you will see values showing the azimuth and altitude of the cursor. Note that both are measured in degrees, arcminutes, and arcseconds. There are 60 arcminutes in 1 degree, and 60 arcseconds in 1 arcminute. The azimuth and altitude shown in the second column (to the right of the ∆ symbol) are the change in coordinates from the location of the cursor when you last clicked the mouse.

To get a feeling for the alt-az system, move the cursor around the sky and watch the azimuth and altitude values. For example, move along the horizon from due north to the east and to the west. How do the altitude and azimuth change? Now move from the "North" straight up. How do the altitude and azimuth change? Notice that the azimuth changes abruptly by 180˚ at the zenith.

Q1: What are the altitude and azimuth angles of the end star in the handle of the Big Dipper?

What constellation is nearest to azimuth 90˚, altitude 0˚? What constellation is nearest to an altitude of 90˚?



Pages:   || 2 | 3 | 4 | 5 |   ...   | 15 |


Similar works:

«STAR FORMATION AND GALACTIC EVOLUTION RICHARD B. LARSON Yale Astronomy Department, Box 208101, New Haven, CT 06520-8101 1 Introduction: Basic Problems Galaxies are, in their observable constituents, basically large bound systems of stars and gas whose components interact continually with each other by the exchange of matter and energy. The interactions that occur between the stars and the gas, most fundamentally the continuing formation of new stars from the gas, cause the properties of...»

«A New Universe to Discover A Guide to Careers in Astronomy Published by The American Astronomical Society What are Astronomy and Astrophysics? Ever since Galileo first turned his new-fangled one-inch “spyglass” on the moon in 1609, the popular image of the astronomer has been someone who peers through a telescope at the night sky. But astronomers virtually never put eye to lens these days. The main source of astronomical data is still photons (particles of light) from space, but the tools...»

«TOPIC. COMMENT Formal Linguistics Meets the Boojum I try not to take things too seriously. I am normally able to laugh at things that would be prime candidates for the weeping, wailing, and gnashing of teeth department if my sense of the ridiculous were suddenly amputated. But there is one thing that oppresses my soul in the current linguistics scene; one stomach-gnawing phobia that causes me to wake up and go downstairs and pad about in the small hours of the morning. I want to share it with...»

«Decoding the Antikythera Mechanism: Investigation of an Ancient Astronomical Calculator T. Freeth1,2, Y. Bitsakis3,5, X. Moussas3, J.H. Seiradakis4, A.Tselikas5, E. Magkou6, M. Zafeiropoulou6, R. Hadland7, D. Bate7, A. Ramsey7, M. Allen7, A. Crawley7, P. Hockley7, T. Malzbender8, D. Gelb8, W. Ambrisco9 and M.G. Edmunds1 1 Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA, UK. Mike Edmunds Mike.Edmunds @ astro.cf.ac.uk 2 Images First Ltd 10...»

«KÖLNER BEITRÄGE ZUR LATEINAMERIKA-FORSCHUNG Herausgegeben von Christian Wentzlaff-Eggebert und Martín Traine La voz del pueblo en el espacio cultural europeo: El pueblo y su identidad editado por Christian Wentzlaff-Eggebert Universidad de Colonia Centro de Estudios sobre España, Portugal y América Latina Universität zu Köln Arbeitskreis Spanien – Portugal – Lateinamerika La voz del pueblo en el espacio cultural europeo: El pueblo y su identidad Contribuciones de Christian...»

«General Introduction to Ancient Astronomical Concepts and to Babylonian Methods -31Basic Concepts The four basic circles and how to locate things Terrestrial Equator: The great circle perpendicular to the pole of rotation of the earth. Terrestrial Longitude: The angular distance of a point on the earth projected onto the terrestrial equator. It is measured from a favored location (e.g. Alexandria). Since the end of the last century this is measured from Greenwich. In the nineteenth century,...»

«Tyson B. Littenberg CIERA/Northwestern University Office: 847.467.1338 Dearborn Observatory Fax: 847.491.3135 2131 Tech Drive Email: tyson.littenberg@northwestern.edu Evanston, Illinois 60208 Homepage: http://faculty.wcas.northwestern.edu/∼tbl987/ CSPAR/University of Alabama Huntsville Office: 256.961.7833 Cramer Hall/NSSTC 2221 Email: tyson.littenberg@uah.edu University of Alabama in Huntsville Huntsville, AL 35899 Experience Education: May, 2009 Ph.D. in Physics – Montana State University...»

«Enabling global access to astronomy multimedia resources Authors: Lars Lindberg Christensen Adrienne Gauthier Robert Hurt Ryan Wyatt Bruce Berriman (contributor) Curtis Wong (contributor) Virtualastronomy.org -2Virtual Astronomy Multimedia Project Project Description September 2007 http://www.virtualastronomy.org Table of Contents Table of Contents Executive Summary 1. The VAMP Vision 2. Communicating Astronomy 3. The Problem: Haphazard Access to Astronomy Imagery 4. The VAMP Solution VAMP...»

«Carl Sagan / The Nuclear Winter http://www.cooperativeindividualism.org/sagan_nuclear_winter.html.. The Nuclear Winter Carl Sagan Carl Sagan, a modern-day Renaissance man of science, was horn in 1934 in New York. After graduating with both a B.A. and a B.S. degree from the University of Chicago, Sagan completed his M.S. in physics and earned a Ph.D. in astronomy and astro-physics in 1960. Sagan was nominated to join the Smithsonian Astrophysical Observatory in 1962. At the same time, he also...»

«ApJLett Disintegrating Asteroid P/2013 R3 David Jewitt1,2, Jessica Agarwal3, Jing Li1, Harold Weaver4, Max Mutchler5 and Stephen Larson6 Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 Dept. of Physics and Astronomy, University of California at Los Angeles, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany The Johns...»

«Photon-detectors R&D for future neutrino experiments T. Nakaya Kyoto University, Kyoto, Japan Abstract We review the recent developments of new photon-detectors available for the future neutrino experiments. A photon-detector with large photo-coverage is the key component of a giant Cherenkov detector which will be an essential part of the future long baseline neutrino oscillation experiment to explore the CP violation in the neutrino sector. A photon-detector with Þne pixels is also the key...»

«El recreo igualitario Guía de recursos sobre coeducación y espacio Ayto. de Hernani (Gipuzkoa) Introducción Esta guía se enmarca dentro de un programa coeducativo auspiciado por el Consejo de Igualdad y el Área de Igualdad del Ayuntamiento de Hernani (Gipuzkoa) desde octubre de 2003. Comenzamos con unas sesiones de sensibilización para el profesorado y las familias. En una segunda fase, realizamos una pequeña investigación antropológica sobre el uso del espacio en dos centros escolares...»





 
<<  HOME   |    CONTACTS
2016 www.dissertation.xlibx.info - Dissertations, online materials

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.