FREE ELECTRONIC LIBRARY - Dissertations, online materials

Pages:   || 2 | 3 | 4 |

«Bull. Astr. Soc. India (2013) 41, 1–17 The discovery of quasars K. I. Kellermann National Radio Astronomy Observatory, 520 Edgemont Road, ...»

-- [ Page 1 ] --

Bull. Astr. Soc. India (2013) 41, 1–17

The discovery of quasars

K. I. Kellermann

National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22901, USA

Received 2013 February 01; accepted 2013 March 26

Abstract. Although the extragalactic nature of quasars was discussed as early as 1960,

it was rejected largely because of preconceived ideas about what appeared to be an unrealistically high radio and optical luminosity. Following the 1962 occultations of the

strong radio source 3C 273 at Parkes, and the subsequent identification with an apparent stellar object, Maarten Schmidt recognized that the relatively simple hydrogen line Balmer series spectrum implied a redshift of 0.16. Successive radio and optical measurements quickly led to the identification of other quasars with increasingly large redshifts and the general, although for some decades not universal, acceptance of quasars as being by far the most distant and the most luminous objects in the Universe.

Arguments for a more local population continued for at least several decades, fueled in part by a greater willingness to accept the unclear new physics needed to interpret the large observed redshifts rather than the extreme luminosities and energies implied by the cosmological interpretation of the redshifts.

Curiously, 3C 273, which is one of the strongest extragalactic sources in the sky, was first catalogued in 1959 and the magnitude 13 optical counterpart was observed at least as early as 1887. Since 1960, much fainter optical counterparts were being routinely identified using accurate radio interferometer positions, measured primarily at the Caltech Owens Valley Radio Observatory. However, 3C 273 eluded identification until the series of lunar occultation observations led by Cyril Hazard.

Subsequent attempts to classify quasars into numerous sub-categories based on their observed optical, radio, IR and high energy properties have perhaps led to more confusion than clarity. However, quasars and the broader class of AGN are now a fundamental part of astrophysics and cosmology. They were the basis for the recognition of supermassive black holes in galactic nuclei, which are intimately tied to the formation and evolution of stars and galaxies.

Keywords : quasars: general – quasars: emission lines – radio continuum: stars – galaxies: distances and redshifts – galaxies: active – occultations – history and philosophy of astronomy 2 K. I. Kellermann

1. Historical background The year 2013 marks the fiftieth anniversary of the discovery of quasars. It was on 5 February, 1963, that Maarten Schmidt at Caltech recognized that the spectrum of the magnitude 13 apparently stellar object identified with the radio source 3C 273 could be most straightforwardly interpreted by a redshift of 0.16. Subsequent work by Schmidt and others led to increasingly large measured redshifts and the recognition of the broad class of active galactic nuclei (AGN) of which quasars occupy the high luminosity end. Schmidt’s discovery changed extragalactic astronomy in a fundamental way. Measured redshifts quickly went from about 0.5 to more than 2 in only a few years, making possible a new range of cosmological studies, as well as the realization that supermassive black holes which power radio galaxies and quasars play a prominent role in the evolution of galaxies. But the path to this understanding was a slow, tortuous one, with missed turns that could have earlier defined the nature of quasars.

The events leading up to the recognition of quasars as the extremely luminous nuclei of distant galaxies go back much earlier than 1963; indeed, one wonders why the extragalactic nature of quasars was not recognized well before 1963, and why 3C 273, which is the seventh brightest radio source in the northern sky away from the Galactic plane, was not identified at least one or two years earlier.

In the remainder of this section I review the early arguments and evidence for powerful activity in the nuclei of galaxies. In Section 2, I briefly review the status of extragalactic radio astronomy prior to the identification of 3C 48, and in Section 3, the identification of 3C 48, which might have been the first discovered quasar, but was unrecognized as such until the work on 3C 273 three years later as described in Section 4. In Section 5 I return to the issues surrounding 3C 48, and in Sections 6 and 7 the implications for cosmology and the arguments for non-cosmological interpretations of quasar redshifts. Sections 8 and 9 describe the discovery of radio quiet quasars and the proliferation of quasar categories and classifications. Finally, in Section 10, I summarize the history and remaining questions surrounding the discovery of quasars.

Probably the first person to note the enhanced activity in the nucleus of a galaxy was Edward Fath (1908) who reported on the nuclear emission line spectrum of NGC 1068. Later observations of strong nuclear emission lines by V. Slipher (1917), Edwin Hubble (1926), Milton Humason (1932), and Nick Mayall (1934, 1939) led Carl Seyfert (1943) to his now famous study of the enhanced activity in the nuclei of six galaxies (or as he called them, ‘extragalactic nebulae’).

Seyfert, as well as his predecessors, commented on the similarity with the emission line spectrum of planetary and other gaseous nebulae and that the lines are apparently Doppler broadened.

There is no evidence that he ever continued this work, but nevertheless galaxies containing a stellar nucleus with strong broad emission (including forbidden) lines have become known as ‘Seyfert Galaxies’. Unfortunately, Seyfert died in an automobile accident in 1960. Before his death, he served three years on the board of Associated Universities Inc. during the critical period when AUI was overseeing the early years of NRAO. It interesting to speculate whether if Seyfert had lived, his association with the radio astronomers at NRAO might have led to an earlier appreciation of the relationship between radio emission and nuclear activity.

The discovery of quasars However, it was Victor Ambartsumian who mainly championed the idea that something special was going on in the nuclei of galaxies. At the 1958 Solvey Conference, Ambartsumian (1958) proposed ‘a radical change in the conception on the nuclei of galaxies’, saying ‘apparently we must reject the idea that the nuclei of galaxies is composed of stars alone’. He went on to conclude that, ‘large masses of prestellar matter are present in nuclei’.

Even earlier, Sir James Jeans (1929) wrote:

‘The type of conjecture which presents itself, somewhat insistently, is that the centres of the nebulae are of the nature of “singular points”, at which matter is poured into our universe from some other and entirely spatial dimension, so that to a denizen of our universe, they appear as points at which matter is being continually created.’ In a prescient paper, Hoyle and Fowler (1963) considered ‘the existence at the very centre of galaxies of a stellar-type object of large mass... in which angular momentum is transferred from the central star to a surrounding disk of gas’.

–  –  –

When discrete sources of radio emission were discovered, they were first thought to be due to Galactic stars. Both, Karl Jansky and Grote Reber had shown that the diffuse radio emission was associated with the Milky Way, and since the Milky Way is composed of stars, it seemed natural that the discrete radio sources were likely connected with stars. Indeed for many years they were called ‘radio stars’.

The first hint that at least some radio sources might be extragalactic came from a series of observations made by John Bolton, Gordon Stanley, and Bruce Slee (1949) using cliff interferometers in Australia and New Zealand. After months of painstaking observations, Bolton and his colleagues succeeded in measuring the positions of three strong radio sources with an accuracy better than half a degree. For the first time it was possible to associate radio sources with known optical objects. Taurus A, Centaurus A, and Virgo A were identified with the Crab Nebula, NGC 5128 and M87 respectively. NGC 5128, with its conspicuous dark lane, and M87, with its prominent jet, were well known to astronomers as peculiar galaxies. But, their 1949 paper, ‘Positions of Three Discrete Sources of Galactic Radio Frequency Radiation’, which was published in Nature mostly discussed the nature of the Crab Nebula. In a few paragraphs near the end of their paper, they commented, ‘NGC 5128 and NGC 4486 (M87) have not been resolved into stars, so there is little direct evidence that they are true galaxies. If the identification of the radio sources are accepted, it would indicate that they are [within our own Galaxy]’. As implied by the title, Bolton, Stanley, and Slee dismissed the extragalactic nature of both Centaurus A and M87. When asked many years later why he didn’t recognize that he had discovered the first radio galaxies, Bolton responded that he knew they were extragalactic, but that he also realized that the corresponding radio luminosity would be orders of magnitude greater than that of our Galaxy and that he was concerned that in view of this apparent extraordinary luminosity, a conservative Nature 4 K. I. Kellermann referee might hold up publication the paper. However, in a 1989 talk, Bolton (1990) commented that their 1949 paper marked the beginning of extragalactic radio astronomy. Nevertheless, for the next few years the nature of discrete radio sources remained controversial within the radio astronomy community, and many workers, particularly at the Cambridge University Cavendish Laboratory, continued to refer to radio stars.

Following the identification of Cygnus A with a magnitude 18 galaxy at z = 0.06, by Walter Baade and Rudolph Minkowski (1954), it became widely appreciated that the high latitude radio sources were in fact very powerful ‘radio galaxies’, and that the fainter radio sources might be at much larger redshifts, even beyond the limits of the most powerful optical telescopes such as the Palomar 200 inch. In a footnote to their paper, Baade and Minkowski confess that Cygnus A had been previously identified with the same galaxy by Mills and Thomas (1951) and by Dewhurst (1951), but at the time Minkowski was not willing to accept the identification with such a faint and distant nebula. Over the next five years, many other radio galaxies were recognized based on more accurate radio positions measured at Cambridge, and starting in 1960, with the Caltech interferometer, which John Bolton had built specifically to obtain more accurate radio source positions in order to enable more optical identifications. Recognizing that radio galaxies were characteristically the brightest galaxy in a cluster, it became clear to many that the search for distant galaxies needed to address the outstanding cosmological problems of the day should therefore concentrate on galaxies identified with radio sources. Moreover, it was naturally assumed that the smaller radio sources were most likely to be the more distant, so emphasis was given to the smallest radio sources, whose dimensions were determined with the long baseline radio linked interferometers at Jodrell Bank (Allen et al. 1960; Allen et al. 1962) and with the Caltech OVRO (Owens Valley Radio Observatory) interferometer.

Much of this work was carried out within a collaboration of scientists at Caltech and at the Mount Wilson and Palomar Observatories. John Bolton, Tom Matthews, Alan Moffet, Dick Read, and Per Maltby at the Caltech OVRO provided accurate radio positions, angular sizes, and optical identifications based on inspection of the 48 inch Schmidt prints and plates. At the Mt. Wilson and Palomar Observatories, Baade, Minkowski, and Allan Sandage teamed up with the Caltech radio astronomers to obtain 200 inch photographs and spectra. At Caltech, Jesse Greenstein, Guido Munch and, after Minkowski’s retirement in 1960, Maarten Schmidt provided spectroscopic follow-up to determine the redshifts of radio galaxies.

This program had a dramatic success, when, using the 200 inch telescope during his last observing session before retiring, Minkowski (1960) determined a redshift of 0.46 of the 20.5 magnitude galaxy which was identified by Matthews and Bolton with 3C 295. This made 3C 295 by far the largest known redshift. Although previous to Minkowski’s observation, the largest measured spectroscopic redshift was less than 0.2, curiously an unrelated foreground galaxy located only a few arcmin from 3C 295 was observed by Minkowski to have a redshift of 0.24, making it the second largest known redshift at the time. Yet, it would be another 15 years before a galaxy redshift greater than that of 3C 295 would be measured. Interestingly, 3C 295 was targeted not because of any special properties, but only because it was at a high declination, where The discovery of quasars an accurate declination could be measured with the OVRO interferometer, which at that time had only an East-West baseline.

–  –  –

By late 1960, it was widely accepted that radio sources located away from the Galactic plane were powerful distant radio galaxies (e.g., Bolton 1960). But, Bolton’s Caltech colleague, Jesse Greenstein, a world expert on exotic stars, was said to have offered a bottle of the best Scotch whisky to whoever found the first true radio star. Meanwhile, in the quest to find more distant galaxies, the Caltech identification program concentrated on small diameter sources selected from the early OVRO interferometer observations and from unpublished long baseline interferometer observations at Jodrell Bank (Allen et al. 1962).

Pages:   || 2 | 3 | 4 |

Similar works:

«Chemical Abundances of Bright Giants in the Mildly Metal-Poor Globular Cluster M4 Inese I. Ivans∗ Department of Astronomy and McDonald Observatory, University of Texas at Austin, USA Abstract: We present a chemical composition analysis of three dozen giant stars in the nearby “CN-bimodal” mildly metal-poor ([Fe/H] = -1.18) globular cluster M4. The analysis combined traditional spectroscopic abundance methods with modifications to the line-depth ratio technique pioneered by Gray (1994)....»

«–1– Discovery of the first accretion-powered millisecond X-ray pulsar Rudy Wijnands∗ & Michiel van der Klis∗† ∗ Astronomical Institute “Anton Pannekoek”, University of Amsterdam, & Center for High Energy Astrophysics, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands † Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 Sent to Nature on April 20, 1998 –2– The precise origins of the millisecond radio pulsars, discovered in the early 1980s1,...»

«Archimedes of Syracuse1 Archimedes of Syracuse (287 212 BCE), the most famous and probably the best mathematician of antiquity, made so many discoveries in mathematics and physics that it is difficult to point to any of them as his greatest. He was born in Syracuse, the principal city-state of Sicily, the son of the astronomer Phidias. He spent considerable time in Alexandria, where he studied with Euclid’s successors. It is there he met Conon of Samos (fl. 245 BCE) and Eratosthenes of Cyrene...»

«Early development of a test-bed to measure fractoluminescence in scintillators & simulation of a 24Na source for the SNO+ experiment by Emilie Mony A thesis submitted to the Department of Physics, Engineering Physics & Astronomy in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada June 2014 Copyright c Emilie Mony, 2014 Abstract This thesis consists of two parts; the first part pertains to fractoluminescence as a potential...»

«Measuring the Atmospheric Influence on Differential Astrometry: a Simple Method Applied to Wide Field CCD Frames N. Zacharias1 U.S. Naval Observatory, 3450 Mass. Ave. N.W., Washington D.C. 20392, Electronic mail: nz@pyxis.usno.navy.mil Received ; accepted PASP revised manuscript, 12 Aug 96, proofs to NZ 1 with Universities Space Research Association (USRA), Division of Astronomy and Space Physics, Washington D.C., based on observations made at KPNO and CTIO –2– ABSTRACT Sets of short...»

«Bowyer Research Wednesday, April 1, 2015 Shemitah Years and Blood Moons as Market Timing Tools Contributors to this paper: Jerry Bowyer is the President of Bowyer Research Jay Ryan is author of “Signs & Seasons; Understanding the Elements of Classical Astronomy” Charles Bowyer is a Research Analyst for Bowyer Research For More Information: Jerry Bowyer jerry@bowyerresearch.com Jay Ryan http://www.classicalastronomy.com/ Bowyer Research Shemitah Years and Blood Moons as Market Timing Tools...»

«LOS PATIOS ESCOLARES: ESPACIOS DE OPORTUNIDADES EDUCATIVAS Imma Marín Resumen: Este artículo presenta los resultados de una investigación1 realizada en 30 centros de educación primaria de Cataluña. El objetivo de la indagación fue reflexionar sobre el concepto y praxis que en las escuelas tienen sobre los usos, espacios, actividades y tiempos de los patios escolares, así mismo promover el debate sobre la adecuación de estos espacios para que cumplan con su función educativa. La...»

«Turismo y cambio social en Santiago de Cuba ¡ 247 TURISMO Y CAMBIO SOCIAL EN SANTIAGO DE CUBA IDRISM.IWAKI Licenciado en Sociología. Universidad de Oriente-Santiago de Cuba. HÉCTOR O. BEATÓN Profesor asistente Departamento de Sociología. Universidad de Oriente-Santiago de Cuba.ERNESTO A. LÓPEZ Profesor asistente Departamento de Sociología. Universidad de Oriente-Santiago de Cuba. JAVIER M.FERRER Profesor titular Departamento de Trabajo Social y Servicios Sociales. Universidad de...»

«Using Shape Grammar to Derive Cellular Automata Rule Patterns Thomas H. Speller, Jr.a, Daniel Whitneya Edward Crawleyb a Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 b Department of Aeronautics and Astronautics, Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 This paper shows how shape grammar can be used to derive cellular automata (CA) rules. Searching the potentially astronomical space of CA rules...»

«The AAVSO CCD Observing Manual AAVSO 49 Bay State Road Cambridge, MA 02138 phone: +1 617 354-0484 email: aavso@aavso.org Copyright 2011 AAVSO Preface This manual is a basic introduction and guide to using CCDs to make variable star observations. The target audience is beginner to intermediate level CCD observers, although advanced CCD users who have not done any photometry will also find this helpful. The AAVSO CCD Observing Manual had its origins with the AAVSO's CCD observing program itself,...»

«Volume 1 Winter 2007 In This Issue STARLAB e-News is Here! STARLAB Funding Finder ● ● STARLAB for Mathematics Education Ask the Editor ● ● STARLAB Activity: How Many Stars Are in the The Inside Scoop from LTI ● ● Sky? The Digital Dish: Latest News on Digital ● Astronomy Ignoramus Shares Her Love for STARLAB ● Astronomy Meeting the National Standards with Project STAR ● STARLAB Tips: First-time User Planning Workshop & Convention Calendar ● ● New Ideas Under the Dome...»

«J. Astrophys. Astr. (1987) 8, 343–350 An Analytical Approximation of the Hubble Space Telescope Monochromatic Point Spread Functions Ο. Bendinelli Dipartimento di Astronomia, Università di Bologna, Via Zamboni 33, 40126 Bologna, Italy G. Parmeggiani Osservatorio Astronomico di Bologna, Via Zamboni 33, 40126 Bologna, Italy F. Zavatti Dipartimento di Astronomia, Università di Bologna, Via Zamboni 33, 40126 Bologna, Italy Received 1987 June 16; accepted 1987 October 7 Abstract. A mixture of...»

<<  HOME   |    CONTACTS
2016 www.dissertation.xlibx.info - Dissertations, online materials

Materials of this site are available for review, all rights belong to their respective owners.
If you do not agree with the fact that your material is placed on this site, please, email us, we will within 1-2 business days delete him.